
Welcome to the RED HEAD[®] Product and Resource Book

CELEBRA

G 100 YEARS

This highly detailed Application Section allows you to look up your trade or specialty, view a variety of practical applications and receive simple product recommendations. Along with the product recommendations you'll notice page numbers for easy reference to the product selection and specifications pages.

We are continuing the consolidation of our Adhesive Anchoring System under the RED HEAD brand name. The adhesive anchoring products and formulas remain, providing versatile solutions.

As always this Product and Resource Book continues to provide a wealth of valuable information including: product approvals/listings, applications, selection charts, performance tables and installation steps.

Remember, if you ever need more information about ITW RED HEAD products, technology and service, contact your local distributor, or look on the back cover for a complete listing of ITW RED HEAD facilities. We welcome your calls and feedback, and look forward to answering any questions you might have.

www.itwredhead.com

Table of Contents

Fastening Applications Guide

(Curtain Wall Applications
E	lectrical Contractor Applications
Ν	Mechanical Contractor Applications. 5
[Orywall Contractor and Carpenter Applications 6
ŀ	Acoustical Ceiling Installer Applications
5	iteel Erector Applications
(Concrete and Masonry Contractor Applications 9
١	Vater & Waste Water Treatment Applications 10
ŀ	lighway and Bridge Contractor Applications
(General Contractor Applications. 12
Ν	Material Handing Applications. 13
5	pecialty Applications
ŀ	Anchoring Working Principles

Anchoring Selection Chart18Truspec Software19

RED HEAD Adhesive Anchoring Systems

Adhesive Anchoring Selection Guide 21
A7+ Adhesive
C6+ Adhesive
G5 Adhesive
Umbrella Inserts and Stubby Screens 52
Screen Tubes
Accessories

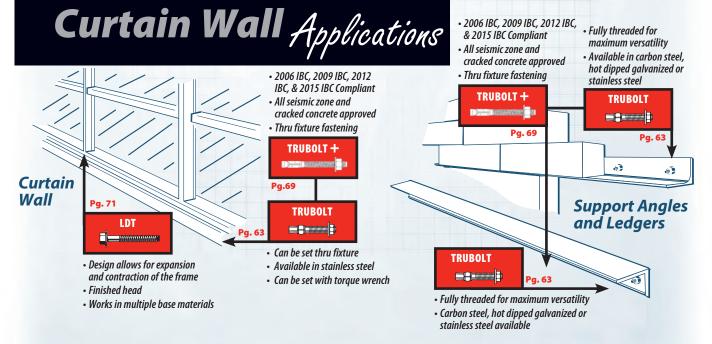
RED HEAD Mechanical Anchoring Systems

Mechanical Anchoring Selection Guide	59
Trubolt Wedge Anchors	63
Trubolt+ Seismic Wedge Anchors	69
Trubolt+ Stainless Steel Seismic Wedge Anchors	70
Large Diameter Tapcon (LDT) Anchors	71
Tapcon+	
Boa Coil Expansion Anchors	
Multi-Set II Drop-in Anchors	80
Dynabolt Sleeve Anchors	85
Tapcon Concrete and Masonry Anchors (Original & 410 SS)	88
Tapcon Maxi-Set	
Tapcon SCOTS®	
Tapcon XL	
Tapcon StormGuard	
Hammer-Set Anchors	100
Performance values in accordance to 2009 IBC	

(See itwredhead.com for info on retired adhesives A7 & S7)

The information and recommendations in this document are based on the best information available to us at the time of preparation. We make no other warranty, expressed or implied, as to its correctness or completeness, or as to the results or reliance of this document.

Anchoring Systems


Fastening Applications Guide

This section highlights a variety of trade applications and provides information that will assist you in selecting the best fastening system for your application.

While these are not to be considered complete, they will give you an idea of how contractors use our products.

For example, on the Electrical Contractor page, you will find applications, such as junction box/panel boards and

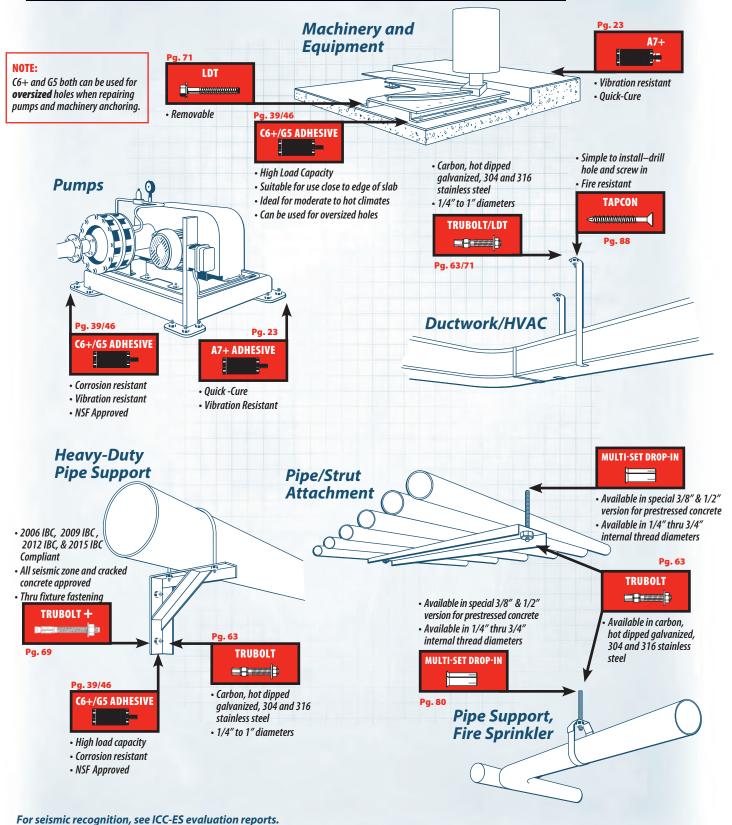
suspended lighting. Next to the diagrams are the product name(s) and page number in this catalog where you will find complete information on these products needed for that particular application.

For seismic recognition, see ICC-ES evaluation reports.

For installation guidelines for your application, please contact our Technical Services Department at 1-800-848-5611.

IT W Red Head Call our toll free number **800-848-5611** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

Electrical Contractor Applications

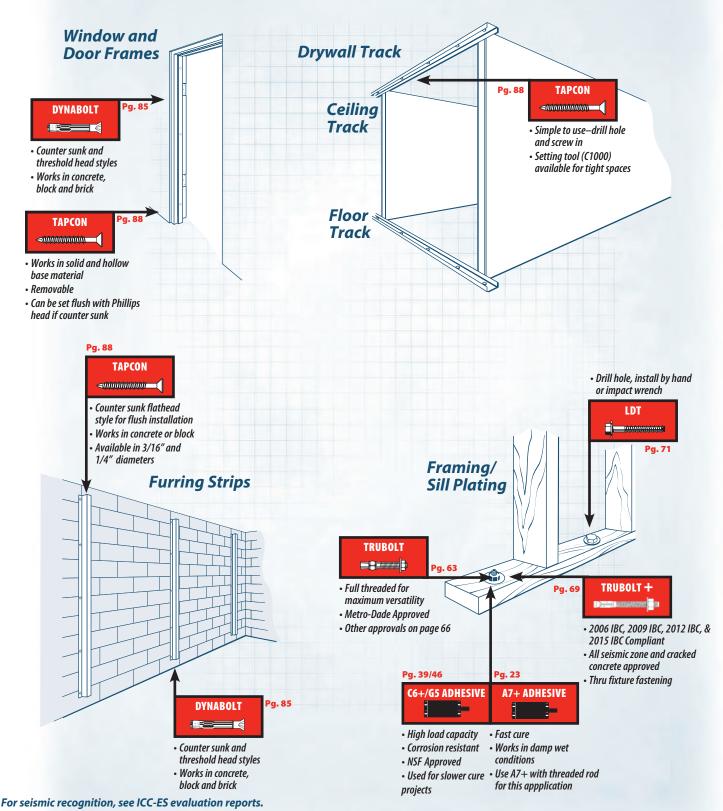


For seismic recognition, see ICC-ES evaluation reports.

For installation guidelines for your application, please contact our Technical Services Department at 1-800-848-5611.

Mechanical Contractor Applications

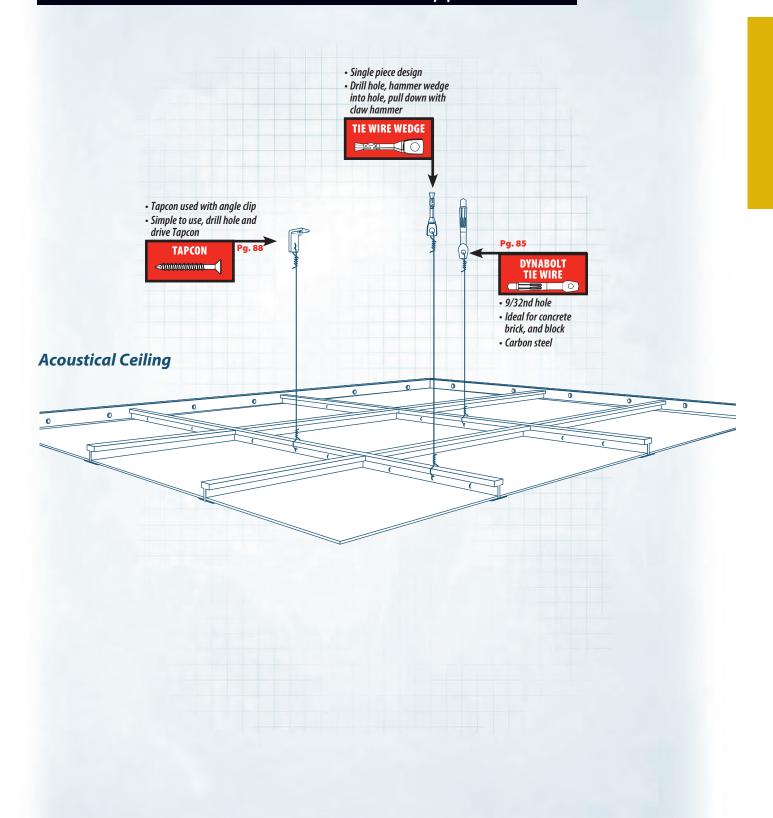
冬 RED HEAD°


5

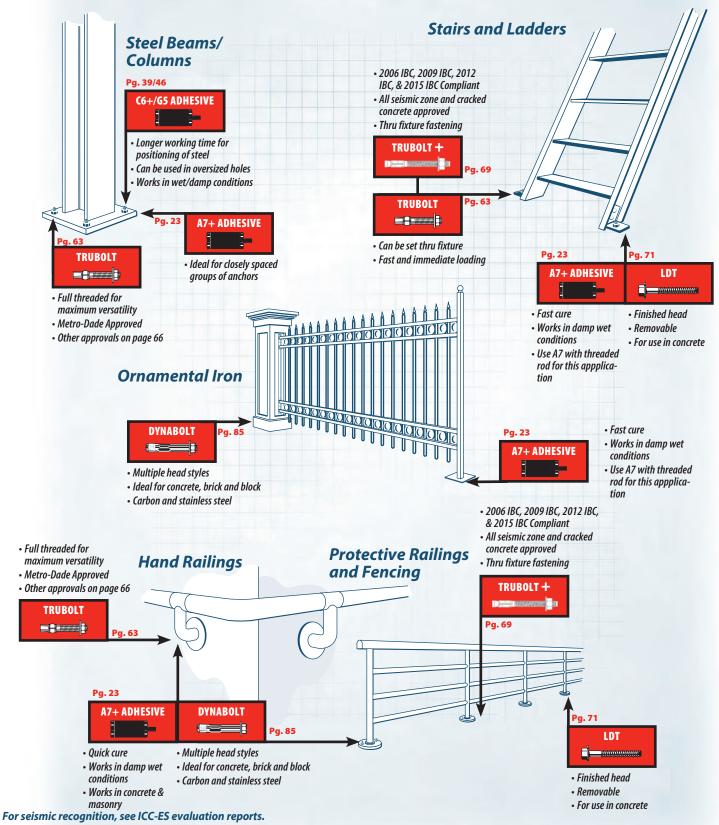
For installation guidelines for your application, please contact our Technical Services Department at 1-800-848-5611.

NTW Red Head

Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>


Drywall Contractor & Carpenter Applications

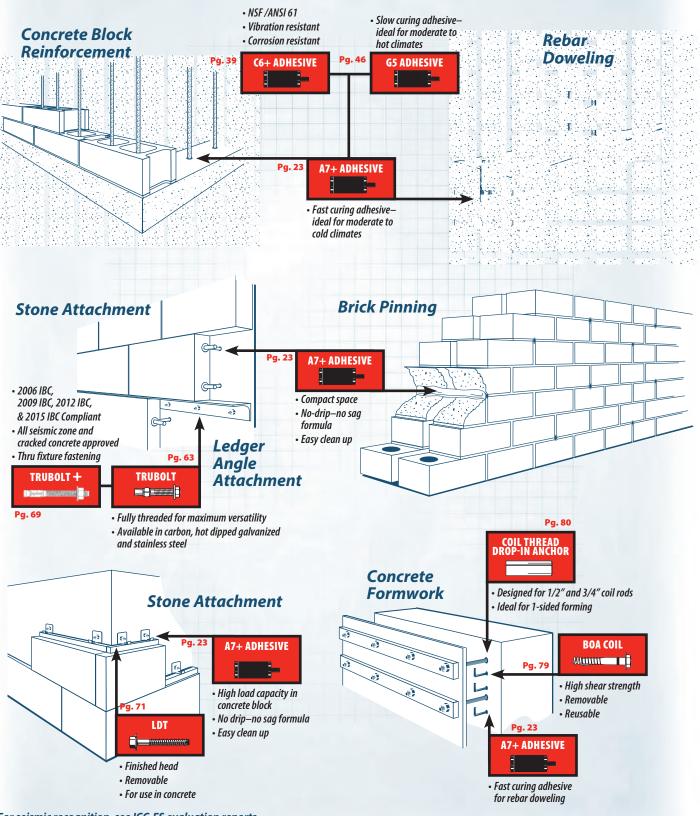
For installation guidelines for your application, please contact our Technical Services Department at 1-800-848-5611.



Acoustical Ceiling Installer Applications

For seismic recognition, see ICC-ES evaluation reports. For installation guidelines for your application, please contact our Technical Services Department at 1-800-848-5611.

Steel Erector Applications

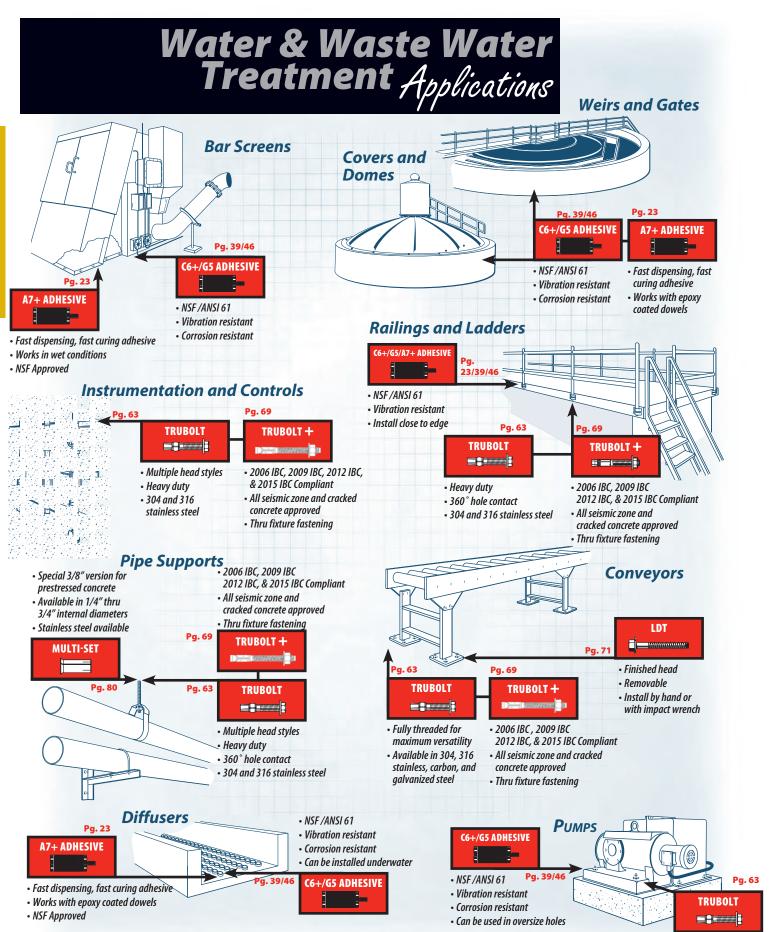


For installation guidelines for your application, please contact our Technical Services Department at 1-800-848-5611.

Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

Concrete & Masonry Contractor Applications

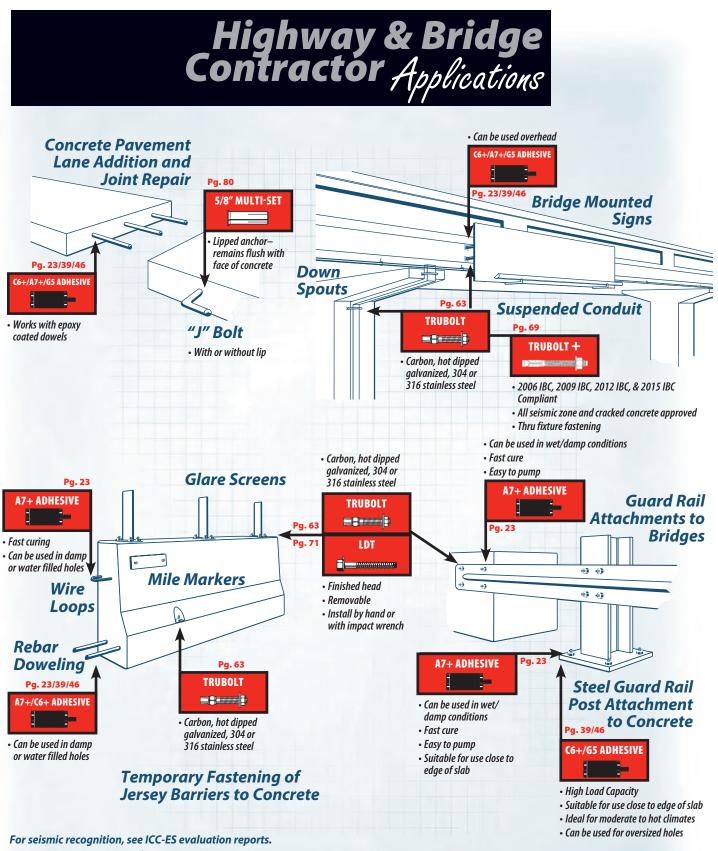
For seismic recognition, see ICC-ES evaluation reports.


For installation guidelines for your application, please contact our Technical Services Department at 1-800-848-5611.

😓 RED HEAD"

9

TW **Red Head**


Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

For seismic recognition, see ICC-ES evaluation reports.

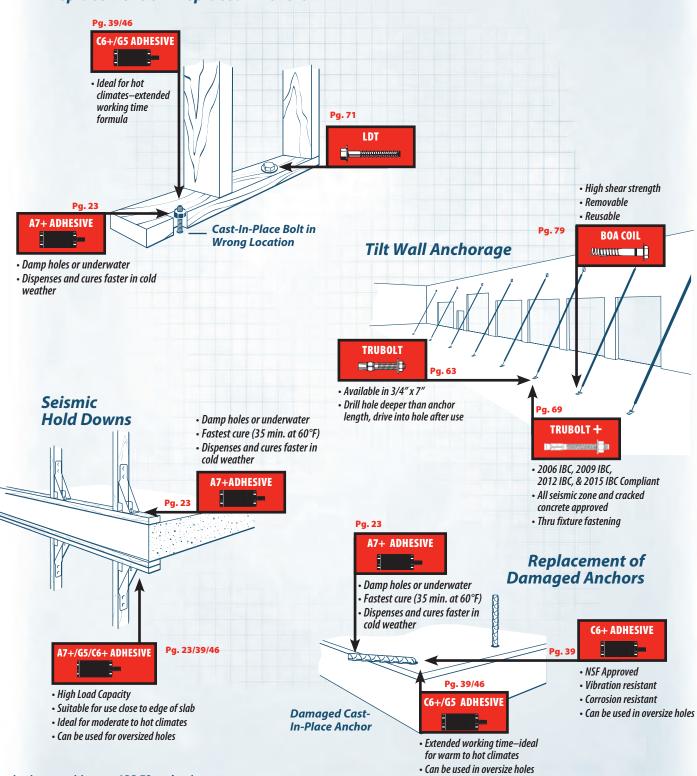
For installation guidelines for your application, please contact our Technical Services Department at 1-800-848-5611.

For installation guidelines for your application, please contact our Technical Services Department at 1-800-848-5611.

Department of Transportation Approvals & Listings

冬 RED HEAD°

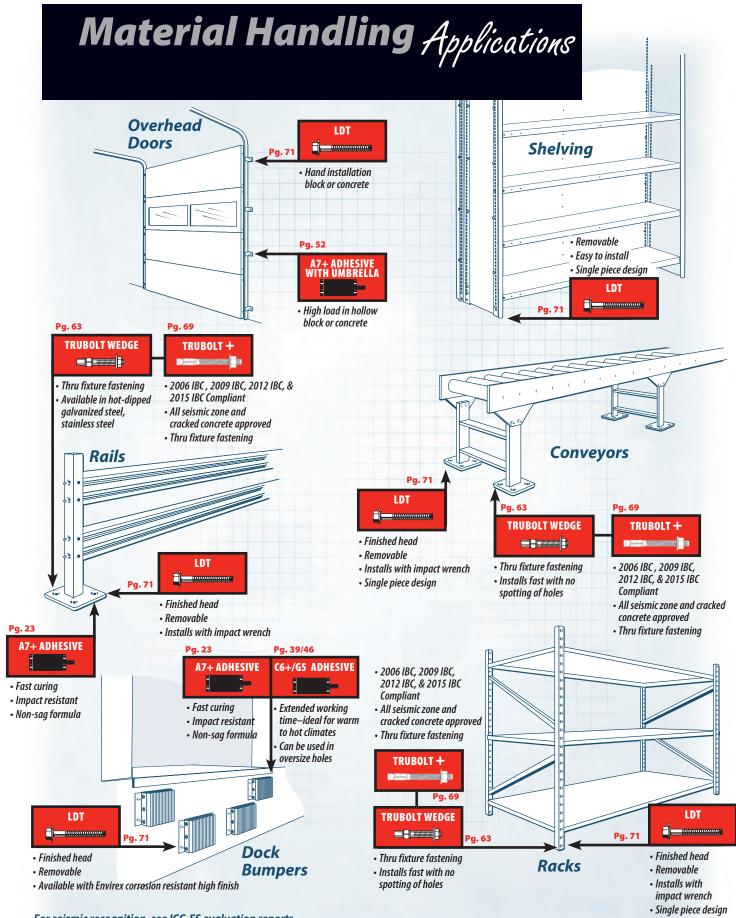
11


For approvals contact local engineering on a per project basis. Call your local RED HEAD sales person for more information.

TW **Red Head**

Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

General Contractor Applications


Replacement of Misplaced Anchors

For seismic recognition, see ICC-ES evaluation reports.

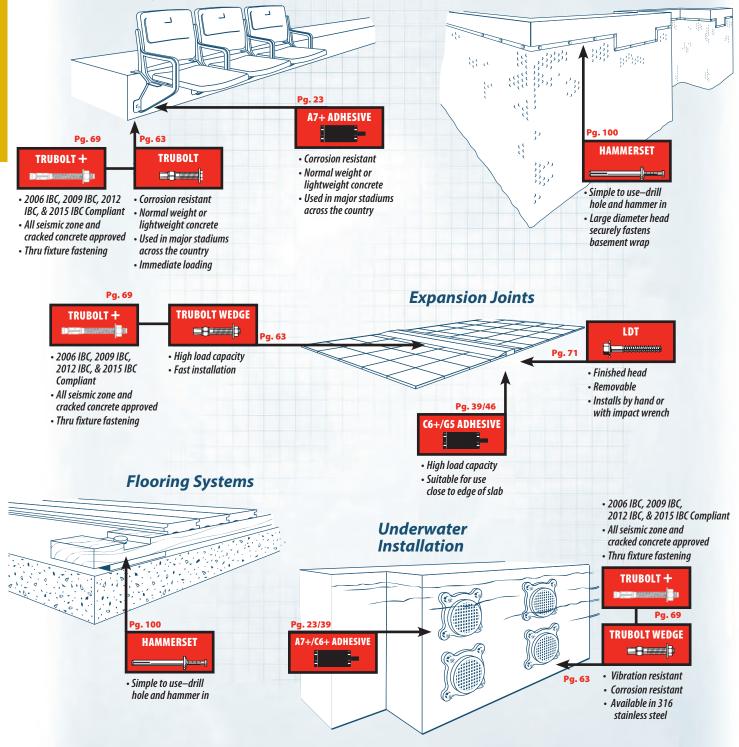
For installation guidelines for your application, please contact our Technical Services Department at 1-800-848-5611.

For seismic recognition, see ICC-ES evaluation reports.

For installation guidelines for your application, please contact our Technical Services Department at 1-800-848-5611.

冬 RED HEAD"

13


TW **Red Head**

Call our toll free number **800-848-5611** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

Specialty Applications

Stadium Seating

Basement Wrap

For seismic recognition, see ICC-ES evaluation reports.

For installation guidelines for your application, please contact our Technical Services Department at 1-800-848-5611.

Anchoring Working Principles

The Inside Story About Mechanical and Adhesive Anchors

Types, Base Materials, Installation Procedures and More

TYPES OF ANCHORS

.....

Expansion Type—

Tension loads are transferred to the base material through a portion of the anchor that is expanded inside the drill hole.

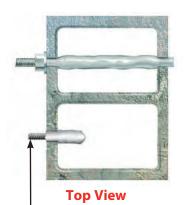
Examples: Red Head Trubolts, Dynabolts, Multi-Set II Anchors and Hammer-Sets

Adhesive Type—

Resistance to tension loads is provided by the presence of an adhesive between the threaded rod (or rebar) and the inside walls of the drill hole.

Examples: A7+, C6+, and G5 Adhesives

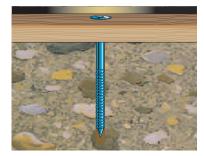
Keying Type—


Holding strength comes from a portion of an anchor that is expanded into a hollow space in a base material that contains voids such as concrete block or brick.

Examples: Adhesive Umbrella Anchors

Mechanical Interlocking Type—

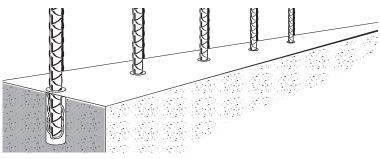
Tension loads are resisted by threads on the fastener engaging with threads cut into the base material.


Examples: LDT, Tapcon and E-Z Ancors

For attachments to single face of block, see page 50 for information on umbrella anchors" and "stubby screens"

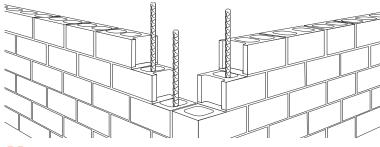
HOLLOW CONCRETE BLOCK

Maximum holding strength in concrete block can be obtained by fastening to both the front and back of the block using an adhesive screen tube and threaded rod.



Anchoring Working Principles

BASE MATERIALS

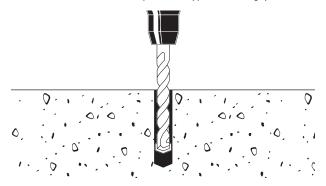

Concrete

<u>Normal Weight Concrete</u> is made from Portland cement, coarse and fine aggregates, water and various admixtures. The proportioning of these components controls the strength of the concrete. In the United States, concrete strength is specified by the compressive strength* of concrete test cylinders. These test cylinders measure six inches in diameter by 12 inches in length and are tested on the 28th day after they are produced.

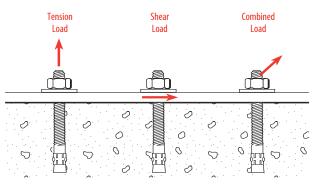
Lightweight Concrete consists of the same components (cement, coarse and fine aggregates, water and admixtures) as normal weight concrete, except it is made with lightweight aggregate. One of the most common uses of lightweight concrete has been as a structural fill of steel decking in the construction of strong, yet light floor systems.

Typical fasteners for both normal weight and lightweight concrete include Trubolt Wedge Anchors, LDT Self-Threading Anchors, Dynabolt Sleeve Anchors, Multi-Set II Drop-In Anchors, Stud Anchors and Adhesive Anchoring Systems.

* Compressive strengths shown in this catalog were the actual strengths at the time of testing. The load values listed were determined by testing in un-reinforced concrete.


Masonry

Grout-Filled Concrete Block consists of three components: concrete, mortar and grout. The mortar is designed to join the units into an integral structure with predictable performance properties. Typical fasteners for grout-filled block include Dynabolt Sleeve Anchors, and C6+, or A7+ Adhesive Anchoring Systems.


Hollow Concrete Block, Brick and Clay Tile are grouped together because they require special anchoring products that can be installed into a substrate that contains voids and still provide reliable holding values. Typical fasteners used in hollow block, brick and clay tile include Dynabolt Sleeve Anchors, Tapcon Self-Tapping Concrete Anchors, Adhesives with Screen Tubes and Adhesives used with the Umbrella Anchor.

INSTALLATION PROCEDURES

Anchor drill holes are typically produced using carbide tipped drill bits and rotary hammer drills. Look at the product sections of this catalog for the correct drill hole diameter and depth of each type of anchoring system.

Careful cleaning of the anchor drill hole is important in order to obtain the best possible functioning of the anchor system. For each product in this catalog, detailed installation instructions are provided. Suggested clamping torques and curing times (for adhesive anchors) are also provided.

Loading

Holding values for the following types of loading are provided in this catalog:

Tension loads—

when load is applied along the axis of the anchor

Shear loads—

when the loads are applied perpendicular to the axis of the anchor

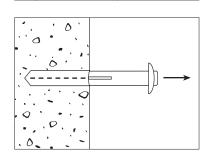
Combined loads—

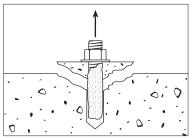
when both tension and shear loads are applied to an anchor, a combined loading equation is provided to determine the maximum loads that can be applied to the anchor at the same time

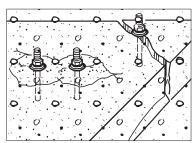
MODES OF FAILURE

When anchors are loaded to their maximum capacity, several different types (modes) of failure are possible depending on the type of anchor, strength of the base material, embedment depth, location of the anchor, etc. Common modes of failure include:

 \wedge




Occurs at shallow embedments where the resistance of the base material is less than the resistance of the anchor and the base material fails.


Steel Breakage—

The capacity of the anchorage exceeds the tensile or shear strength of the steel anchor or rod material.

Base material adjacent to the extension portion of an anchor crushes, resulting in the anchor pulling out of the hole until the capacity of the spall cone is reached, at which point the concrete will spall. This type of failure happens more commonly when anchors are set with

Because applications vary, ITW RED HEAD cannot guarantee the performance of this product. Each customer assumes all responsibility and risk for the use of this product. The safe handling and the suitability of this product for use is the sole responsibility of the customer. Specific job site conditions should be considered when selecting the proper product. Should you have any questions, please call the Technical Assistance Department at 800-848-5611.

deep embedment depths.

Bond Failure— Shear failure of the adhesive at rod-adhesive interface or

Anchor Pullout

adhesive-base material interface. Occurs more commonly in deep embedments using high strength steel rods.

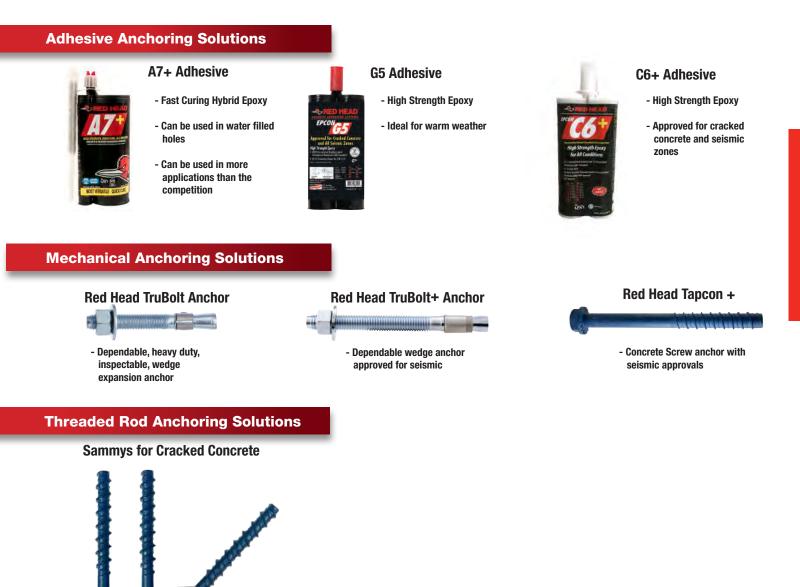
Edge Distance and Spacing Reduction—

Reduces the holding values, when anchors are placed too close to the edge. This also occurs when two or more anchors are spaced closely together. See suggested edge distance, anchor spacing distances and reduction values in the product sections.

Anchoring Selection Chart

		Adh	esive And	hors	Screw A	Anchors	Expansion Anchors					
	A seals a s						Torque-Set				Hammer-Set	
	Anchor Selection Chart	A7+	C6+	G5	LDT	Tapcon	Trubolt	Trubolt+	Dynabolt	Boa Coil	Drop-In	Hammer-Set
	Uncracked Concrete	A7+	C6+	G5	LDT	TAP	TRU	TRU+	DYNA	BOA	DROP	HAMM
	Cracked Concrete	A7+	C6+	G5				TRU+				
	Lightweight Concrete	1	İ		1	TAP	TRU	TRU+	DYNA	İ	DROP	
Base Material	Lightweight Concrete on Metal Deck	İ			LDT		TRU	TRU+			DROP	
Mat	Hollow Core Concrete	Ì	Ì					ĺ		ĺ	DROP	
ase	Grout Filled Concrete Block	A7+	1		LDT				DYNA			
	Hollow Concrete Block	A7+	Ì		LDT	TAP		Ì	DYNA	1		
	Solid Brick	A7+										
	Drywall											
s	Oversized Holes	A7+	C6+	G5								
tion	Water Saturated Concrete	A7+	C6+	G5	LDT	TAP	TRU	TRU+	DYNA	BOA	DROP	HAMM
Hole Conditions	Water-filled Holes	A7+	C6+	G5	LDT	TAP	TRU	TRU+	DYNA	BOA	DROP	НАММ
le C	Submerged	A7+	C6+	G5								
우	No Hole Cleaning Procedures				1							
	Through Fixture Fastening	A7+	C6+	G5	LDT	TAP	TRU	TRU+	DYNA	BOA		HAMM
ents	Immediate Loading				LDT	TAP	TRU	TRU+	DYNA	BOA	DROP	HAMM
eme	Finished Head or Flush Surface				LDT	TAP			DYNA	BOA	DROP	НАММ
Application Requirements	Easy to Remove				LDT	TAP				BOA		
n Re	Seismic	A7+	C6+	G5				TRU+				
catio	Cyclic Loading	A7+	C6+	G5			TRU	TRU+				
pplic	High Temperature Resistance	A7+	C6+	G5	LDT	TAP	TRU	TRU+	DYNA	BOA	DROP	HAMM
A	Sustained Load	A7+	C6+	G5	LDT	TAP	TRU	TRU+	DYNA	BOA	DROP	
e	Zinc Plated	A7+	C6+	G5	1		TRU	TRU+	DYNA	BOA	DROP	НАММ
osion Resistance	Hot-Dipped Galvanized	A7+	C6+	G5			TRU					
tesis	304 Stainless Steel	A7+	C6+	G5			TRU		DYNA			
on R	316 Stainless Steel	A7+	C6+	G5			TRU	TRU+			DROP	
rosi	410 Stainless Steel	A7+	C6+	G5	LDT	TAP						
Corr	Trade Secret Coating				LDT	TAP						
	3/16″					TAP						НАММ
	1/4″	A7+				TAP	TRU		DYNA		DROP	НАММ
	5/16″					TAP			DYNA			
LLS	3/8″	A7+	C6+	G5	LDT		TRU	TRU+	DYNA		DROP	
nete	1/2″	A7+	C6+	G5	LDT		TRU	TRU+	DYNA	BOA	DROP	
Diar	5/8″	A7+	C6+	G5	LDT		TRU	TRU+	DYNA	BOA	DROP	
Anchor Diameters	3/4″	A7+	C6+	G5	LDT		TRU	TRU+	DYNA	BOA	DROP	
Anc	7/8″	A7+	C6+	G5								
	1″	A7+	C6+	G5			TRU					
	1-1/4″	A7+	C6+	G5								
	Rebar Sizes	#3-11	#3-8,10	#3-10								
	Working Time (minutes)	5	11	15								
At 70°F	Cure Time (minutes)	45	420	1440								
			120	1110								

ANCHOR CALCULATION SOFTWARE


Design concrete anchoring connections in minutes!

Use Truspec to become an expert who can easily design post-installed concrete anchoring connections in accordance with ACI 318.

			· International Action of the International Action	
VIEW	Customize anchor layouts or choose from a wide selection of pre-configured options	• Tips on how to navigate and use the Anchor Calculation Software		
DESIGN	 Design post-installed anchor connections according to ACI 318 Optimize performance via intuitive base plate thickness calculator and design comparison mode 	Design in accordance with ICC-ES AC 308 and ACI 355.4 adhesive temperature requirements		
MODEL	 Select, sort, and filter according to the most efficient anchoring product type and size Attachment with single or multiple anchor points 	 Simultaneous moment forces in x-, y-, z- axis Minimum edge distance Minimum anchor spacing c 	distance	
INTERACT WITH	Real-time 3D animations and graph	ics		4
CALCULATE	Critical values for total strength design of anchor connections	 Values in US Customary or Metric Units 		
PREDICT	Mode of failure for anchor connection	ons		
RECOMMEND	 Most efficient anchoring method (adhesive or mechanical anchors) Most efficient anchor size 		Americanic Americanic Americanic <th></th>	
BUILD A PRINTED OR PDF REPORT	 Including Anchor Calculation Data Detailed Calculations for Anchor Design 3D Image of Anchor Calculation 	ESR Report(s)Code cross-references		
	sit our web site for the most www.itwredhead.com		RED HE	AD [°] 19

Use TruSpec Anchor Calculation Software to become an expert on:

for cracked concrete, seismic, and standard applications

TW Red Head Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

Adhesive Anchoring Selection Guide

Solid Concrete Applications

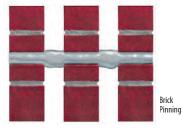
KEY FEATURES	PROP	ERTIES			H DESIGN	
 Solid or hollow base materials Dispenses easier and faster Use in dry, saturated, and water-filled holes 	BASE MATERIAL (F°/C°)	GEL/WORKING TIME	FULL CURE TIME	(NSF.)		
· · · · ·	110°/ 43°	1.5 minutes	45 minutes	ANSI/NSF 61		
	-	3 minutes	45 minutes			
	-					23,17
					10,752	
	-			3,871	, i i i i i i i i i i i i i i i i i i i	
	117 10	55 minutes	21110015	•	5/8″ x 5-5/8″	1″ x 9″
18 month shelf life				5/0 x 5 5/0	J/O K J J/O	1 / 2
NSF/ANSI 61						
35% greater bond strength than the closest competition in 70°F concrete	BASE MATERIAL	WORKING	FULL	NSF.		
Better performance in dry saturated and	(F'/C')	TIME	CORETIME	Certified to ANSI/NSF 61		
water-filled conditions	104°/ 40°	3 minutes	3 hours	-		
Oversized and Diamond cored holes	95°/ 35°	4 minutes	4 hours	-		
1 of Street	-			-		24,81
	-				9,692	
	59°/ 15°	15 minutes	8 hours	3,489		
	50°/ 10°	20 minutes	12 hours	- 3/8" x 3-3/8"	5/8″ x 5-5/8″	1″ x 9″
	40°/ 4.4°	20 minutes	24 hours	-	5/0 x 5 5/0	1 / 2
Fire rated: tested up to 4hrs FRP			NSF.	Fire Tested	Internatio Standard Besistance	Fire
	аррисаціоня		Certified to ANSI/NSF 61	BS476	Performar	-
	BASE					
	MATERIAL	WORKING	FULL			
Odorless	(F°/C°)	TIME	CURE TIME			
Oversized and cored holes	110°/43°	9 minutes	24 hours			14,69
Improved wet/water filled	90°/ 32°	9 minutes	24 hours		7,016	
Resist wind loads	70°/ 20°	15 minutes	24 hours	2,526		
18 month shelf life				3/8″ x 3-3/8″	5/8″ x 5-5/8″	1″ x 9″
				5,6 1 5 5/0	510 1 5 510	1
100% solid (No V.O.C.)						
	 Solid or hollow base materials Dispenses easier and faster Use in dry, saturated, and water-filled holes Fastest cure (35 min. at 60°F) Dispenses and cures faster in cold weather Can be used in smaller diameter holes No-drip formula Hand dispensable 28-oz. cartridge 18 month shelf life NSF/ANSI 61 35% greater bond strength than the closest competition in 70°F concrete Better performance in dry, saturated, and water-filled conditions Oversized and Diamond cored holes Safe and durable Approved for cracked concrete and seismic zones 24 month shelf life NSF/ANSI 61 Solid base materials Fire rated: tested up to 4hrs FRP Works in dry, damp, saturated, and underwater at Gives more time to install anchors Easier to install anchors in hot weather Odorless Oversized and cored holes Improved wet/water filled Resist wind loads 	 Solid or hollow base materials Dispenses easier and faster Use in dry, saturated, and water-filled holes Fastest cure (35 min. at 60°F) Dispenses and cures faster in cold weather Can be used in smaller diameter holes Sol' 10° No-drip formula Hand dispensable 28-oz. cartridge 18 month shelf life NSF/ANSI 61 Solid or greater bond strength than the closest competition in 70°F concrete Better performance in dry, saturated, and water-filled conditions Oversized and Diamond cored holes Safe and durable Approved for cracked concrete and seismic zones 24 month shelf life NSF/ANSI 61 Solid base materials Fire rated: tested up to 4hrs FRP Works in dry, damp, saturated, and underwater applications Gives more time to install anchors Gives more time to install anchors Gives more time to install anchors Easier to install anchors in hot weather Material Odorless Oversized and cored holes Easier to install anchors in hot weather Material Odorless Dire rated: tested up to alter since Gives more time to install anchors Easier to install anchors in hot weather Material Odorless Improved wet/water filled 90°/ 32° 90°/ 32° 	 Solid or hollow base materials Dispenses easier and faster Use in dry, saturated, and water-filled holes Fastest cure (35 min. at 60°F) Dispenses and cures faster in cold weather Can be used in smaller diameter holes No-drip formula Hand dispensable 28-oz. cartridge 18 month shelf life NSF/ANSI 61 Solid base materials Safe and durable Approved for cracked concrete and seismic zones Solid base materials Fire rated: tested up to 4hrs FRP Works in dry, damp, saturated, and underwater applications Gives more time to install anchors Gives more time to install anchors Gives more time to install anchors Easier to install anchors in hot weather Odorless Oversized and cored holes Fire rated: tested up to 4hrs FRP Works in dry, damp, saturated, and underwater applications Gives more time to install anchors Easier to install anchors in hot weather Gives more time to install anchors Easier to install anchors in hot weather Oversized and cored holes Improved wet/water filled Oversized and cored holes Fire rated: tested up to 4hrs FRP Works in dry, damp, saturated, and underwater applications Gives more time to install anchors Easier to install anchors in hot weather Opri 32° 9 minutes Opri 32° 9 minutes Opri 32° 9 minutes Opri 32° 9 minutes 	 Solid or hollow base materials Dispenses easier and faster Use in dry, saturated, and water-filled holes Fastest cure (35 min. at 60°F) Dispenses and cures faster in cold weather Can be used in smaller diameter holes No-drip formula Hand dispensable 28-oz, cartridge 18 month shelf life NSF/ANSI 61 Sofé greater bond strength than the closest competition in 70°F concrete Better performance in dry, saturated, and water-filled conditions Oversized and Diamond cored holes Safe and durable Approved for cracked concrete and seismic zones 24 month shelf life NSF/ANSI 61 Solid base materials Fire rated: tested up to 4hrs FRP Works in dry, damp, saturated, and underwater applications Gives more time to install anchors Gives more time to install anchors Gives more time to install anchors Easier to install anchors in hot weather Odorless Oversized and cored holes Fire rated: tested up to 4hrs FRP Works in dry, damp, saturated, and underwater applications Gives more time to install anchors Easier to install anchors in hot weather Odorless Oversized and cored holes Easier to install anchors in hot weather Odorless Oversized and cored holes Easier to install anchors in hot weather Odorless Oversized and cored holes Easier to install anchors in hot weather Odorless Improved wet/water filled Oversized and cored holes Improved wet/water filled Oversized and cored holes Improved wet/mater filled Oversized and cored holes Improved	 Solid or hollow base materials Dispenses easier and faster Use in dry, saturated, and water-filled holes Fastest cure (35 min. at 60°F) Dispenses and cures faster in cold weather Can be used in smaller diameter holes No-drip formula Hand dispensable 28-oz. cartridge 18 month shelf life NSF/ANSI 61 35% greater bond strength than the closest competition in 70°F concrete Better performance in dry, saturated, and water-filled conditions Oversized and Diamond cored holes Safe and durable Approved for cracked concrete and seismic cones 24 month shelf life NSF/ANSI 61 Solid base materials Fire rated: tested up to 4hrs FIP Works in dry, damp, saturated, and underwater applications Solid base materials Fire rated: tested up to 4hrs FIP Works in dry, damp, saturated, and underwater applications Solid base materials Fire rated: tested up to 4hrs FIP Works in dry, damp, saturated, and underwater applications Solid base materials Fire rated: tested up to 4hrs FIP Works in dry, damp, saturated, and underwater applications Gives more time to install anchors Solid base materials Fire rated: tested up to 4hrs FIP Works in dry, damp, saturated, and underwater applications Gives more time to install anchors Easier to install anchors in hot weather Odorless Oversized and cored holes Easier to install anchors in hot weather Oversized and cored holes Easier to install anchors in hot weather Oversized and cored holes Easier to install anchors in hot weather Oversized and cored holes<td> Solid or hollow base materials Dispenses easier and faster Use in dry, saturated, and water-filled holes Fastest cure (35 min. at 60°F) Dispenses and cures faster in cold weather Can be used in smaller diameter holes No-drip formula Hand dispensable 28-oz. cartridge Is month shelf life NSF/ANSI 61 Oversized and Diamond cored holes Approved for cracked concrete and seismic zones A month shelf life Solid abse materials Approved for cracked concrete and seismic zones A month shelf life Solid base materials Fire rated: tested up to 4hrs FRP Works in dry, damp, saturated, and underwater applications Solid base materials Fire rated: tested up to 4hrs FRP Works in dry, damp, saturated, and underwater applications Solid base materials Fire rated: tested up to 4hrs FRP Works in dry, damp, saturated, and underwater applications Gives more time to install anchors in hot weather Gives more time to install anchors in hot weather Gives more time to install anchors in hot weather Gives more time to install anchors in hot weather Gives more time to install anchors in hot weather Gives more time to install anchors in hot weather Gives more time to install anchors in hot weather Gives more time to install anchors in hot weather Gives more time to install anchors in hot weather Gives more time to install anchors in hot weather Gives more time to install anchors in hot weather Gives more time to install anchors in hot weather Gives more time to install anchors in hot weather Gives more time to install anchors in hot weather</td>	 Solid or hollow base materials Dispenses easier and faster Use in dry, saturated, and water-filled holes Fastest cure (35 min. at 60°F) Dispenses and cures faster in cold weather Can be used in smaller diameter holes No-drip formula Hand dispensable 28-oz. cartridge Is month shelf life NSF/ANSI 61 Oversized and Diamond cored holes Approved for cracked concrete and seismic zones A month shelf life Solid abse materials Approved for cracked concrete and seismic zones A month shelf life Solid base materials Fire rated: tested up to 4hrs FRP Works in dry, damp, saturated, and underwater applications Solid base materials Fire rated: tested up to 4hrs FRP Works in dry, damp, saturated, and underwater applications Solid base materials Fire rated: tested up to 4hrs FRP Works in dry, damp, saturated, and underwater applications Gives more time to install anchors in hot weather Gives more time to install anchors in hot weather Gives more time to install anchors in hot weather Gives more time to install anchors in hot weather Gives more time to install anchors in hot weather Gives more time to install anchors in hot weather Gives more time to install anchors in hot weather Gives more time to install anchors in hot weather Gives more time to install anchors in hot weather Gives more time to install anchors in hot weather Gives more time to install anchors in hot weather Gives more time to install anchors in hot weather Gives more time to install anchors in hot weather Gives more time to install anchors in hot weather

¹Diameter x Embedment in 4000 psi concrete.

²All loads given in pounds.

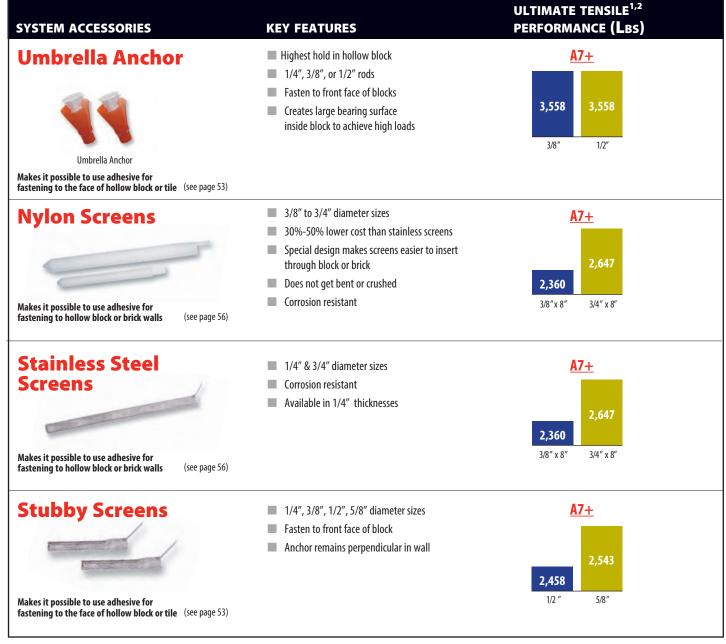
³ Calculated using the ICCES threaded rod data in uncracked, dry concrete with periodic inspection. Temperature range A.

*Red Head A7+ replaced Epcon A7 and S7. For information on the retired A7 and S7 adhesives, please visit www.itwredhead.com


RED HEAD

21

Fastening to Concrete with Threaded Rod


Hollow Base Material Applications

Use the following accessories with the A7+ adhesive anchoring system for all of your hollow base material applications.

Fastening to hollow concrete block

¹Testing performed in hollow concrete block. ²Diameter x Embedment.

A7+

The Most Versatile Quick Cure Adhesive

A7P-10

A7P-28

APPLICATIONS / USES

- Concrete dowelling (slabs, walls, columns)
- Steel framing (columns, beams, ledgers)
- Brick pinning and CMU reinforcement
- Architectural metal fastening (railings, signage)
- Mechanical, electrical, and plumbing attachment
- Vibratory equipment anchoring
- Overhead and horizontal anchors

DESCRIPTION

Quick Curing Hybrid Epoxy Adhesive

RED HEAD A7+ is a high-strength, fast-cure adhesive that is designed to securely anchor threaded rod and rebar to cured concrete and masonry. A7+ is one of the most versatile achoring solutions on the market, suitable for use in an extremely wide range of applications and environmental conditions.

- Qualified for use in concrete, brick, block, and clay tile
- ICC-ES approved for cracked concrete and seismic applications (ICC-ES ESR 3903).
- Cures in only 45 minutes (at base temperature of 70°F/21°C)
- No extra time required for drying saturated concrete or water-filled holes
- Easy pumping even in cold temperatures
- Low odor suitable for use indoors and in occupied buildings
- Optimum viscosity simplifies use in overhead and horizontal holes
- 18-month storage life minimizes waste and risk of using expired product
- Rugged cartirdge resists breakage due to rough handling or cold temperatures
- Store between 32°F and 95°F in a cool, dry place.

ADVANTAGES

- All weather formula
- Works in damp holes and underwater applications
- Fast curing time, 45 minutes at 70°F
- ICC-ES Evaluation Report ESR-3903 (Concrete) and ESR-3951 (Masonry)
- NSF 61 Listed, certified got use in conjuntion with drinking water systems

Curing Times

CONCRETE (F°)	ADHESIVE (F°)	GEL TIME	FULL CURE TIME
110	110	1.5 minutes	45 minutes
90	90	3 minutes	45 minutes
70	70	5 minutes	45 minutes
50	50	15 minutes	90 minutes
30	30	35 minutes	4 hours
14	30	35 minutes	24 hours

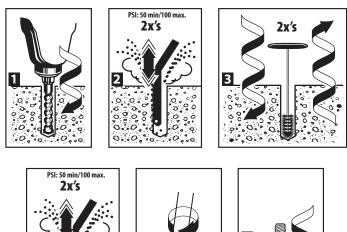
materials

Fast & easy dispensing, even 28 ounce

Formula for use in solid and hollow base

Suitable for oversized and diamond cored

cartridge can be hand dispensed


holes with increased depths

Most Competitive Spacing and Edge Distance

· · · · · · · · · · · · · · · · · · ·		
NOMINAL ANCHOR DIAMETER (IN.)	MINIMUM SPACING (IN.)	MINIMUM EDGE DISTANCE (IN.)
3/8	15/16	15/16
1/2	1-1/2	1-1/2
5/8	2-1/2	2-1/2
3/4	3	3
7/8	3-1/2	3-1/2
1	4	4
1-1/4	5	5

TW Red Head Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

INSTALLATION STEPS

* Damp, submerged and underwater applications require 4x's air, 4x's brushing and 4x's air

PACKAGING

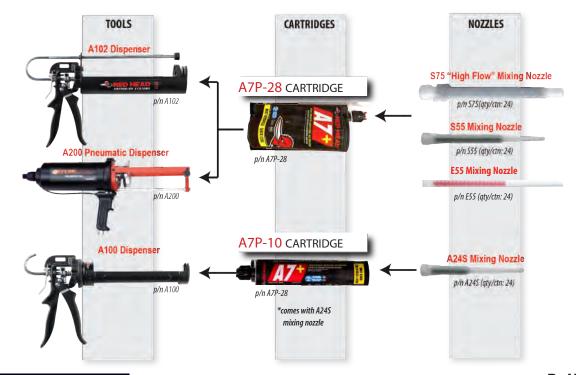
- 1. Disposable, self-contained cartridge system capable of dispensing both components in the proper mixing ratio
- 2. Acrylic components dispensed through a static mixing nozzle that thoroughly mixes the material and places the material at the base of the pre-drilled hole
- 3. Cartridge markings: Include manufacturer's name, batch number and best-used-by date, mix ratio by volume, ANSI hazard classification, and appropriate ANSI handling precautions

APPROVALS/LISTINGS

ICC-ES ESR-3903 for Cracked and Uncracked concrete including all Seismic Zones ICC-ES ESR-3951 for masonry IBC 2006/2009/2012/2015 Compliant NSF/ANSI Standard 61

For the most current approvals/listings visit: www.itwredhead.com

APPLICATIONS


Water Treatment Facilities

The best-in-class in edge and spacing distance of Red Head A7+ and its ability to work in water have make it a great fit for waste water treatment plants.

Roadway Doweling

A7+ dispenses so quickly and rebar inserts so easily that contractors find installed costs are lower than many other products including grout for doweling.

A7P-28 fl. oz. Ordering Information

PART NUMBER	DESCRIPTION	BOX QTY	PART NUMBER	DESCRIPTION	BOX QTY
	28 Fluid Ounce Cartridge A7+			Mixing Nozzle for A7P-28 Cartridge Nozzle diameter fits holes for 3/8" diameter & larger anchors (overall length of nozzle 10")	6
A7P-28	Each cartirdge comes with a S55 Nozzle	4	-		
ESS	Mixing Nozzle for A7P-28 and G5-22 Cartridge Nozzle diameter fits 3/8" to 5/8" holes. (overall length of nozzle 14")	24			
	-		A200	Pneumatic Dispenser for A7P-28 Cartridge	1
	Largest hand dispensable cartridge— still easy to dispense			6-Foot Straight Tubing (Used when holes are deeper)	24
A102	Hand Dispenser for A7P-28 Cartridge	1	E25-6	(can cut to proper size) (.39 in I.D. x .43 in. O.D.)	

ESTIMATING TABLE

A7+ Number of Anchoring Installations per Cartridge* 28 Fluid Ounce Cartridge Using Reinforcing Bar with A7+ Adhesive in Solid Concrete

	DRILL							EMBEDM	ENT DEPTH	IN INCHES						
REBAR	R HOLE DIA. INCHES	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
#3	7/16	558.2	279.1	186.1	139.5	111.6	93.0	79.7	69.8	62.0	55.8	50.7	46.5	42.9	39.9	37.2
#4	5/8	273.5	136.7	91.2	68.4	54.7	45.6	39.1	34.2	30.4	27.3	24.9	22.8	21.0	19.5	18.2
#5	3/4	189.9	95.0	63.3	47.5	38.0	31.7	27.1	23.7	21.1	19.0	17.3	15.8	14.6	13.6	12.7
#6	7/8	139.5	69.8	46.5	34.9	27.9	23.3	19.9	17.4	15.5	14.0	12.7	11.6	10.7	10.0	9.3
#7	1	106.8	53.4	35.6	26.7	21.4	17.8	15.3	13.4	11.9	10.7	9.7	8.9	8.2	7.6	7.1
#8	1-1/8	84.4	42.2	28.1	21.1	16.9	14.1	12.1	10.6	9.4	8.4	7.7	7.0	6.5	6.0	5.6
#9	1-1/4	68.4	34.2	22.8	17.1	13.7	11.4	9.8	8.5	7.6	6.8	6.2	5.7	5.3	4.9	4.6
#10	1-1/2	47.5	23.7	15.8	11.9	9.5	7.9	6.8	5.9	5.3	4.7	4.3	4.0	3.7	3.4	3.2
#11	1-3/4	34.9	17.4	11.6	8.7	7.0	5.8	5.0	4.4	3.9	3.5	3.2	2.9	2.7	2.5	2.3

*The estimated number of anchoring installations per cartridge is based upon calculations of filling the hole 60% full of adhesive per the recommendation in our installation instructions. Hole volumes are calculated using ANSI tolerance carbide tipped drill bits. These estimates do not account for any waste.

ESTIMATING TABLE

28 Fluid Ounce Cartridge

Number of Anchoring Installations per Cartridge* Using Threaded Rod with A7+ Adhesive in Solid Concrete

ROD	DRILL		EMBEDMENT DEPTH IN INCHES														
(in.)	HOLE DIA. INCHES	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
1/4	5/16	1094.0	547.0	364.7	273.5	218.8	182.3	156.3	136.7	121.6	109.4	99.5	91.2	84.2	78.1	72.9	
3/8	7/16	558.2	279.1	186.1	139.5	111.6	93.0	79.7	69.8	62.0	55.8	50.7	46.5	42.9	39.9	37.2	
1/2	9/16	337.7	168.8	112.6	84.4	67.5	56.3	48.2	42.2	37.5	33.8	30.7	28.1	26.0	24.1	22.5	
5/8	3/4	189.9	95.0	63.3	47.5	38.0	31.7	27.1	23.7	21.1	19.0	17.3	15.8	14.6	13.6	12.7	
3/4	7/8	139.5	69.8	46.5	34.9	27.9	23.3	19.9	17.4	15.5	14.0	12.7	11.6	10.7	10.0	9.3	
7/8	1	106.8	53.4	35.6	26.7	21.4	17.8	15.3	13.4	11.9	10.7	9.7	8.9	8.2	7.6	7.1	
1	1-1/8	84.4	42.2	28.1	21.1	16.9	14.1	12.1	10.6	9.4	8.4	7.7	7.0	6.5	6.0	5.6	
1-1/4	1-3/8	56.5	28.3	18.8	14.1	11.3	9.4	8.1	7.1	6.3	5.7	5.1	4.7	4.3	4.0	3.8	
1-1/2	1-5/8	40.5	20.2	13.5	10.1	8.1	6.7	5.8	5.1	4.5	4.0	3.7	3.4	3.1	2.9	2.7	

*The estimated number of anchoring installations per cartridge is based upon calculations of filling the hole 60% full of adhesive per the recommendation in our installation instructions. Hole volumes are calculated using ANSI tolerance carbide tipped drill bits. These estimates do not account for any waste.

A7P-10 fl. oz. Ordering Information

PART NUMBER	DESCRIPTION	BOX QTY
A7P-10	9.5 Fluid Ounce Cartridge with Nozzle	6
	Mixing Nozzle for A7P-10 Cartridge	
	Nozzle diameter fits 3/8" to 5/8" holes	
A24S	(overall length of nozzle 6-3/8")	24
	Hand Dispenser Designed for A7P-10 Cartridge	
A100	Contractor Quality 26:1 Thrust Ratio	1

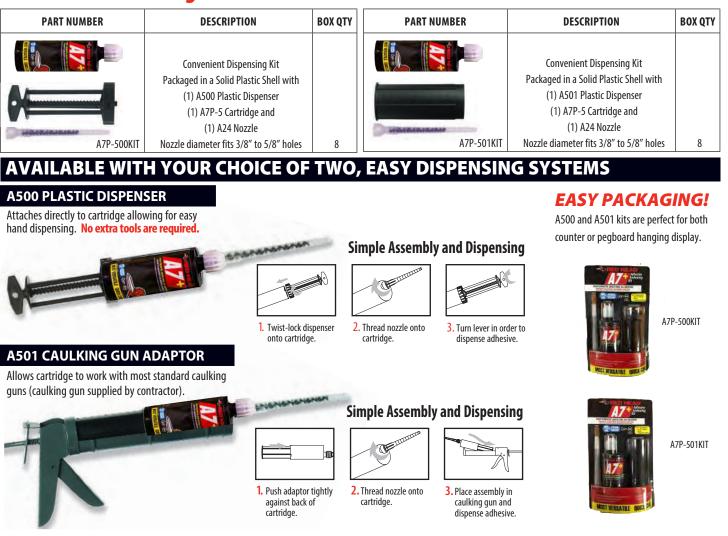
ESTIMATING TABLES

A7+ 9.5 Fluid Ounce Cartridge

Number of Anchoring Installations per Cartridge* Using Reinforcing Bar with A7+ Adhesive in Solid Concrete

	DRILL HOLE DIA.				EN	MBEDMENT [DEPTH IN INC	HES			
ROD (In.)	INCHES	1	2	3	4	5	6	7	8	9	10
#3	7/16	189.4	94.7	63.1	47.4	37.9	31.6	27.1	23.7	21.0	18.9
#4	5/8	92.8	46.4	30.9	23.2	18.6	15.5	13.3	11.6	10.3	9.3
#5	3/4	64.5	32.2	21.5	16.1	12.9	10.7	9.2	8.1	7.2	6.4
#6	7/8	47.4	23.7	15.8	11.8	9.5	7.9	6.8	5.9	5.3	4.7
#7	1	36.3	18.1	12.1	9.1	7.3	6.0	5.2	4.5	4.0	3.6
#8	1-1/8	28.6	14.3	9.5	7.2	5.7	4.8	4.1	3.6	3.2	2.9
#9	1-1/4	23.2	11.6	7.7	5.8	4.6	3.9	3.3	2.9	2.6	2.3
#10	1-1/2	16.1	8.1	5.4	4.0	3.2	2.7	2.3	2.0	1.8	1.6
#11	1-3/4	11.8	5.9	3.9	3.0	2.4	2.0	1.7	1.5	1.3	1.2

ESTIMATING TABLES


A7+ 9.5 Fluid Ounce Cartridge

Number of Anchoring Installations per Cartridge* Using Threaded Rod with A7+ Adhesive in Solid Concrete

	DRILL HOLE DIA.		EMBEDMENT DEPTH IN INCHES								
ROD (In.)	INCHES	1	2	3	4	5	6	7	8	9	10
1/4	5/16	371.3	185.6	123.8	92.8	74.3	61.9	53.0	46.4	41.3	37.1
3/8	7/16	189.4	94.7	63.1	47.4	37.9	31.6	27.1	23.7	21.0	18.9
1/2	9/16	114.6	57.3	38.2	28.6	22.9	19.1	16.4	14.3	12.7	11.5
5/8	3/4	64.5	32.2	21.5	16.1	12.9	10.7	9.2	8.1	7.2	6.4
3/4	7/8	47.4	23.7	15.8	11.8	9.5	7.9	6.8	5.9	5.3	4.7
7/8	1	36.3	18.1	12.1	9.1	7.3	6.0	5.2	4.5	4.0	3.6
1	1-1/8	28.6	14.3	9.5	7.2	5.7	4.8	4.1	3.6	3.2	2.9
1-1/4	1-3/8	19.2	9.6	6.4	4.8	3.8	3.2	2.7	2.4	2.1	1.9
1-1/2	1-5/8	13.7	6.9	4.6	3.4	2.7	2.3	2.0	1.7	1.5	1.4

A7P-5 fl. oz. Ordering Information

ESTIMATING TABLES

A7+ 5 Fluid Ounce Cartridge Bar with A7+ Adhesive in Solid Concrete

	DRILL HOLE DIA.		EMBEDMENT DEPTH IN INCHES									
REBAR	INCHES	1	2	3	4	5	6	7	8			
#3	7/16	101.5	50.7	33.8	25.4	20.3	16.9	14.5	12.7			
#4	5/8	49.7	24.9	16.6	12.4	9.9	8.3	7.1	6.2			
#5	3/4	34.5	17.3	11.5	8.6	6.9	5.8	4.9	4.3			
#6	7/8	25.4	12.7	8.5	6.3	5.1	4.2	3.6	3.2			
#7	1	19.4	9.7	6.5	4.9	3.9	3.2	2.8	2.4			
#8	1-1/8	15.3	7.7	5.1	3.8	3.1	2.6	2.2	1.9			
#9	1-1/4	12.4	6.2	4.1	3.1	2.5	2.1	1.8	1.6			

*The estimated number of anchoring installations per cartridge is based upon calculations of filling the hole 60% full of adhesive per the recommendation in our installation instructions. Hole volumes are calculated using ANSI tolerance carbide tipped drill bits. These estimates do not account for any waste.

ESTIMATING TABLES

A7+ Number of Anchoring Installations per Cartridge* Using Threaded 5 Fluid Ounce Cartridge Rod with A7+ Adhesive in Solid Concrete

	DRILL HOLE DIA.		EMBEDMENT DEPTH IN INCHES									
ROD (in.)	INCHES	1	2	3	4	5	6	7	8			
1/4	5/16	198.9	99.5	66.3	49.7	39.8	33.2	28.4	24.9			
3/8	7/16	101.5	50.7	33.8	25.4	20.3	16.9	14.5	12.7			
1/2	9/16	61.4	30.7	20.5	15.3	12.3	10.2	8.8	7.7			
5/8	3/4	34.5	17.3	11.5	8.6	6.9	5.8	4.9	4.3			
3/4	7/8	25.4	12.7	8.5	6.3	5.1	4.2	3.6	3.2			
7/8	1	19.4	9.7	6.5	4.9	3.9	3.2	2.8	2.4			
1	1-1/8	15.3	7.7	5.1	3.8	3.1	2.6	2.2	1.9			

*The estimated number of anchoring installations per cartridge is based upon calculations of filling the hole 60% full of adhesive per the recommendation in our installation instructions. Hole volumes are calculated using ANSI tolerance carbide tipped drill bits. These estimates do not account for any waste.

PERFORMANCE TABLE

A7+ Quick-Cure Adhesive for Threaded Rod Installed in Solid Concrete

THREADED	DRILL HOLE	MAX. CLAMPING FORCE	EMBEDMENT	2000 PSI (13.8	MPa) CONCRETE	4000 PSI (27.6	MPa) CONCRETE
ROD DIA. In. (mm)	DIAMETER AFTER PROPER CURE IN CONCRETE ULTIMATE TENSION In. (mm) FtLbs. (Nm) In. (mm) Lbs. (kN)		ULTIMATE SHEAR Lbs. (kN)	ULTIMATE TENSION Lbs. (kN)	ULTIMATE SHEAR Lbs. (kN)		
3/8 (9.5)	7/16 (11.1)	13 - 18 (17-24)	1-1/2 (38.1) 3-3/8 (85.7) 4-1/2 (114.3)	N/A 5,852 (26.0) 7,729 (34.4)	N/A 5,220 (23.2) 5,220 (23.2)	3,734 (16.6) 10,977 (48.8) 11,661 (51.9)	4,126 (18.3) 5,220 (23.2) 5,220 (23.2)
1/2 (12.7)	9/16 (14.3)	22 - 25 (29-33)	2 (50.8) 4-1/2 (114.3) 6 (152.4)	N/A 10,798 (48.0) 14,210 (63.2)	N/A 8,029 (35.7) 8,029 (35.7)	6,022 (26.8) 17,162 (76.3) 17,372 (77.3)	8,029 (35.7) 8,029 (35.7) 8,029 (35.7)
5/8 (15.9)	3/4 (19.1)	55 - 80 (74-108)	2-1/2 (63.5) 5-5/8 (142.9) 7-1/2 (190.5)	N/A 16,417 (73.0) 18,747 (83.4)	N/A 15,967 (71.0) 15,967 (71.0)	7,330 (32.6) 26,504 (117.9) 29,381 (130.7)	11,256 (50.1) 15,967 (71.0) 15,967 (71.0)
3/4 (19.1)	7/8 (22.2)	106 - 160 (143-216)	3 (76.2) 6-3/4 (171.5) 9 (228.6)	N/A 18,618 (82.8) 23,934 (106.5)	N/A 20,126 (89.5) 20,126 (89.5)	8,634 (38.4) 29,727 (132.2) 37,728 (167.8)	20,126 (89.5) 20,126 (89.5) 20,126 (89.5)
7/8 (22.2)	1 (25.4)	185 - 250 (250-338)	3-1/2 (88.9) 7-7/8 (200.0) 10-1/2 (266.7)	N/A N/A 36,881 (164.1)	N/A 29,866 (132.9) 29,866 (132.9)	13,650 (60.7) 44,915 (199.8) 48,321 (215.0)	20,920 (92.9) 29,866 (132.9) 29,866 (132.9)
1 (25.4)	1-1/8 (28.6)	276 - 330 (374-447)	4 (101.6) 9 (228.6) 12 (304.8)	N/A 32,215 (143.3) 46,064 (204.9)	N/A 37,538 (167.0) 37,538 (167.0)	16,266 (72.2) 48,209 (214.5) 63,950 (284.5)	33,152 (147.5) 37,538 (167.0) 37,538 (167.0)
1-1/4 (31.8)	1-3/8 (34.9)	370 - 660 (501-894)	5 (127.0) 11-1/4 (285.8) 15 (381.0)	N/A 45,962 (204.5) 62,208 (276.7)	N/A 58,412 (259.8) 58,412 (259.8)	21,838 (97.1) 56,715 (252.3) 84,385 (375.4)	33,152 (147.5) 58,412 (259.8) 58,412 (259.8)

1 Allowable working loads for the single installations under static loading should not exceed 25% capacity or the allowable load of the anchor rod. Divide by 4.

2 Ultimate load values in 2000 and 4000 psi stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on the use of high strength threaded rod (ASTM A193 Gr. B7). The use of lower strength rods will result in lower ultimate tension and shear loads.

3 Linear interpolation may be used for intermediate spacing and edge distances.

PERFORMANCE TABLE

A7+ Allowable Tension Loads¹ for Threaded Rod Quick-Cure Adhesive Installed in Solid Concrete

THREADED ROD DIA.	DRILL HOLE DIAMETER	MIN. EMBEDMENT DEPTH		SION LOAD BASED SOND STRENGTH	ALL	OWABLE TENSION LOAD BA ON STEEL STRENGTH	SED	
In. (mm)	ln. (mm)	In. (mm)	2000 PSI (13.8 MPa) CONCRETE Lbs. (kN)	4000 PSI (27.6 MPa) CONCRETE Lbs. (kN)	ASTM A307 (SAE 1018) Lbs. (kN)	ASTM A193 GR. B7 (SAE 4140) Lbs. (kN)	ASTM F593 AISI 304 SS Lbs. (kN)	
3/8 (9.5)	7/16 (11.1)	1-1/2 (38.1) 3-3/8 (85.7) 4-1/2 (114.3)	N/A 1,460 (6.5) 1,930 (8.6)	934 (4.2) 2,740 (12.2) 2,915 (13.0)	2,080 (9.3) 2,080 (9.3) 2,080 (9.3)	4,340 (19.3) 4,340 (19.3) 4,340 (19.3)	3,995 (17.8) 3,995 (17.8) 3,995 (17.8)	
1/2 (12.7)	9/16 (14.3)	2 (50.8) 4-1/2 (114.3) 6 (152.4)	N/A 2,700 (12.0) 3,550 (15.8)	1,505 (6.7) 4,290 (19.1) 4,340 (19.3)	3,730 (16.6) 3,730 (16.6) 3,730 (16.6)	7,780 (34.6) 7,780 (34.6) 7,780 (34.6)	7,155 (31.8) 7,155 (31.8) 7,155 (31.8)	
5/8 (15.9)	3/4 (19.1)	2-1/2 (63.5) 5-5/8 (142.9) 7-1/2 (190.5)	N/A 4,100 (18.3) 4,685 (20.8)	1,832 (8.2) 6,625 (29.5) 7,345 (32.7)	5,870 (26.1) 5,870 (26.1) 5,870 (26.1)	12,230 (54.4) 12,230 (54.4) 12,230 (54.4)	11,250 (50.0) 11,250 (50.0) 11,250 (50.0)	
3/4 (19.1)	7/8 (22.2)	3 (76.2) 6-3/4 (171.5) 9 (228.6)	N/A 4,655 (20.7) 5,980 (26.6)	2,158 (9.6) 7,430 (33.1) 9,430 (42.0)	8,490 (37.8) 8,490 (37.8) 8,490 (37.8)	17,690 (78.7) 17,690 (78.7) 17,690 (78.7)	14,860 (66.1) 14,860 (66.1) 14,860 (66.1)	
7/8 (22.2)	1 (25.4)	3-1/2 (88.9) 7-7/8 (200.0) 10-1/2 (266.7)	N/A N/A 9,220 (41.0)	3,413 (15.2) 11,230 (49.9) 12,080 (53.7)	11,600 (51.6) 11,600 (51.6) 11,600 (51.6)	25,510 (113.5) 25,510 (113.5) 25,510 (113.5)	20,835 (92.7) 20,835 (92.7) 20,834 (92.7)	
1 (25.4)	1-1/8 (28.6)	4 (101.6) 9 (228.6) 12 (304.8)	N/A 8,050 (35.8) 11,515 (51.2)	4,067 (18.1) 12,050 (53.6) 15,985 (71.1)	15,180 (67.5) 15,180 (67.5) 15,180 (67.5)	31,620 (140.7) 31,620 (140.7) 31,620 (140.7)	26,560 (118.1) 26,560 (118.1) 26,560 (118.1)	
1-1/4 (31.8)	1-3/8 (34.9)	5 (127.0) 11-1/4 (285.8) 15 (381.0)	N/A 11,490 (51.1) 15,550 (69.2)	5,460 (24.3) 14,175 (63.1) 21,095 (93.8)	23,800 (105.9) 23,800 (105.9) 23,800 (105.9)	49,580 (220.6) 49,580 (220.6) 49,580 (220.6)	34,670 (154.2) 34,670 (154.2) 34,670 (154.2)	

1 Use lower value of either bond or steel strength for allowable tensile load.

PERFORMANCE TABLE

A7+ Allowable Shear Loads¹ for Threaded Rod Installed in Quick-Cure Adhesive Solid Concrete

THREADED ROD DIA.	DRILL HOI DIAMETE		MIN. EMBEDMENT	ALLOWABLE SHEA ON CONCRETE		ALLOWABLE SHEAR LOAD BASED ON STEEL STRENGTH			
In. (mm)	In. (mm)		DEPTH In. (mm)	2000 PSI (13.8 MPa) CONCRETE Lbs. (kN)	4000 PSI (27.6 MPa) CONCRETE Lbs. (kN)	ASTM A307 (SAE 1018) Lbs. (kN)	ASTM A193 GR. B7 (SAE 4140) Lbs. (kN)	ASTM F593 AISI 304 SS Lbs. (kN)	
3/8 (9.5)	7/16	(11.1)	1-1/2 (38.1) 3-3/8 (85.7)	N/A 1,305 (5.8)	1,031 (4.6) 1,305 (5.8)	1,040 (4.6) 1,040 (4.6)	2,170 (9.7) 2,170 (9.7)	1,995 (8.9) 1,995 (8.9)	
1/2 (12.7)	9/16	(14.3)	2 (50.8) 4-1/2 (114.3)	N/A 2,005 (8.9)	2,005 (8.9) 2,005 (8.9)	1,870 (8.3) 1,870 (8.3)	3,895 (17.3) 3,895 (17.3)	3,585 (15.9) 3,585 (15.9)	
5/8 (15.9)	3/4	(19.1)	2-1/2 (63.5) 5-5/8 (142.9)	N/A 3,990 (17.8)	2,814 (12.5) 3,990 (17.8)	2,940 (13.1) 2,940 (13.1)	6,125 (27.2) 6,125 (27.2)	5,635 (25.1) 5,635 (25.1)	
3/4 (19.1)	7/8	(22.2)	3 (76.2) 6-3/4 (171.5)	N/A 5,030 (22.4)	5,030 (22.4) 5,030 (22.4)	4,250 (18.9) 4,250 (18.9)	8,855 (39.4) 8,855 (39.4)	7,440 (33.1) 7,440 (33.1)	
7/8 (22.2)	1	(25.4)	3-1/2 (88.9) 7-7/8 (200.0)	N/A 7,465 (33.2)	5,230 (23.3) 7,465 (33.2)	5,800 (25.8) 5,800 (25.8)	12,760 (56.8) 12,760 (56.8)	10,730 (47.7) 10,730 (47.7)	
1 (25.4)	1-1/8	(28.6)	4 (101.6) 9 (228.6)	N/A 9,385 (41.7)	8,288 (36.9) 9,385 (41.7)	7,590 (33.8) 7,590 (33.8)	15,810 (70.3) 15,810 (70.3)	13,285 (59.1) 13,285 (59.1)	
1-1/4 (31.8)	1-3/8	(34.9)	5 (127.0) 11-1/4 (285.8)	N/A 14,600 (64.9)	8,288 (36.9) 14,600 (64.9)	11,900 (52.9) 11,900 (52.9)	24,790 (100.3) 24,790 (100.3)	18,840 (83.8) 18,840 (83.8)	

1 Use lower value of either concrete or steel strength for allowable shear load.

A7+ Quick-Cure Adhesive Adhesi

REINFORCING BAR DIA. In. (mm)	EMBEDMENT IN CONCRETE In. (mm)	2000 PSI (13.8 MPa) CONCRETE ULTIMATE TENSION Lbs. (kN)	4000 PSI (27.6 MPa) CONCRETE ULTIMATE TENSION Lbs. (kN)	MINIMUM YIELD STRENGTH	60 REBAR MINIMUM ULTIMATE TENSILE STRENGTH	
				Lbs. (kN)	Lbs. (kN)	
# 3 (9.5)	3-3/8 (85.7)	6,180 (27.5)	8,324 (37.0)	6,600 (29.4)	9,900 (44.0)	
	4-1/2 (114.3)	7,560 (33.6)	11,418 (50.8)	6,600 (29.4)	9,900 (44.0)	
# 4 (12.7)	4-1/2 (114.3)	9,949 (44.3)	16,657 (74.1)	12,000 (53.4)	18,000 (80.1)	
	6 (152.4)	15,038 (66.9)	17,828 (79.3)	12,000 (53.4)	18,000 (80.1)	
# 5 (15.9)	5-5/8 (142.9)	14,012 (62.3)	20,896 (93.0)	18,600 (82.7)	27,900 (124.1)	
	7-1/2 (190.5)	16,718 (74.4)	26,072 (116.0)	18,600 (82.7)	27,900 (124.1)	
#6 (19.1)	6-3/4 (171.5)	21,247 (94.5)	26,691 (118.7)	26,400 (117.4)	39,600 (176.2)	
	9 (228.6)	33,325 (148.2)	37,425 (166.5)	26,400 (117.4)	39,600 (176.2)	
#7 (22.2)	7-7/8 (200.0)	N/A	40,374 (179.6)	36,000 (160.1)	54,000 (240.2)	
	10-1/2 (266.7)	38,975 (173.4)	46,050 (204.8)	36,000 (160.1)	54,000 (240.2)	
# 8 (25.4)	9 (228.6)	35,600 (158.4)	47,311 (210.5)	47,400 (210.9)	71,100 (316.3)	
	12 (304.8)	41,010 (182.4)	66,140 (294.2)	47,400 (210.9)	71,100 (316.3)	
# 9 (28.6)	10-1/8 (257.2)	N/A	57,221 (254.5)	60,000 (266.9)	90,000 (400.4)	
	13-1/2 (342.9)	N/A	79,966 (355.7)	60,000 (266.9)	90,000 (400.4)	
# 10 (31.8)	11-1/4 (285.8)	49,045 (218.2)	73,091 (325.1)	76,200 (339.0)	114,300 (508.5)	
	15 (381.0)	69,079 (307.3)	83,295 (370.5)	76,200 (339.0)	114,300 (508.5)	
# 11 (34.9)	12-3/8 (314.3)	63,397 (282.0)	75,047 (333.8)	93,600 (416.4)	140,400 (624.6)	
	16-1/2 (419.1)	81,707 (363.5)	91,989 (409.2)	93,600 (416.4)	140,400 (624.6)	

1 Allowable working loads for the single installations under static loading should not exceed 25% capacity or the allowable load of the anchor rod.

2 Ultimate load values in 2000 and 4000 psi stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on the use of minimum Grade 60 reinforcing bar. The use of lower strength rods will result in lower ultimate tension loads.

3 SHEAR DATA: Provided the distance from the rebar to the edge of the concrete member exceeds 1.25 times the embedment depth of the rebar, calculate the ultimate shear load for the rebar anchorage as 60% of the ultimate tensile strength of the rebar.

PERFORMANCE TABLE

A7+ Quick-Cure Adhesive Loads Installed in Solid Concrete

ANCHOR DIAMETER In. (mm)	EMBEDMENT DEPTH In. (mm)	CRITICAL EDGE DISTANCE In. (mm) 100% LOAD CAPACITY)	EDGE DISTANCE EDGE DISTANCE In. (mm) In. (mm)		MINIMUM EDGE DISTANCE In. (mm) (10% LOAD CAPACITY)	
3/8 (9.5)	3-3/8 (85.7)	4-3/16 (106.4)	3-7/16 (87.3)	2-5/16 (58.7)	13/16 (20.6)	
1/2 (12.7)	4-1/2 (114.3)	5-5/8 (142.9)	4-5/8 (117.5)	3-1/8 (79.4)	1-1/8 (28.6)	
5/8 (15.9)	5-5/8 (142.9)	7 (177.8)	5-3/4 (146.1)	3-1/8 (79.4)	1-3/8 (34.9)	
3/4 (19.1)	6-3/4 (171.5)	8-7/16 (214.2)	6-15/16 (176.2)	4-5/8 (117.5)	1-5/8 (41.3)	
1 (25.4)	9 (228.6)	11-1/4 (285.8)	9-1/4 (235.0)	6-1/4 (158.8)	2-1/4 (57.2)	
1-1/4 (31.8)	11-1/4 (285.8)	14-1/16 (357.2)	11-5/8 (295.3)	7-7/8 (200.0)	2-7/8 (73.0)	

PERFORMANCE TABLE

A7+ *Quick-Cure Adhesive Tension Loads Installed in Solid Concrete*

ANCHOR DIAMETER In. (mm)		EMBEDMENT DEPTH In. (mm)	CRITICAL EDGE DISTANCE In. (mm) (100% LOAD CAPACITY)	INTERPOLATED EDGE DISTANCE In. (mm) (90% LOAD CAPACITY)	INTERPOLATED EDGE DISTANCE In. (mm) (80% LOAD CAPACITY)	MINIMUM EDGE DISTANCE In. (mm) (70% LOAD CAPACITY)	
3/8	(9.5)	3-3/8 (85.7) 4-1/2 (114.3)	2-1/2 (63.5) 3-3/8 (85.7)	1-15/16 (49.2) 2-5/8 (66.7)	1-3/8 (34.9) 1-7/8 (47.6)	13/16 (26.2) 1-1/8 (28.6)	
1/2	(12.7)	4-1/2 (114.3) 6 (152.4)	3-3/8 (85.7) 4-1/2 (114.3)	2-5/8 (66.7) 3-1/2 (88.9)	1-7/8 (47.6) 2-1/2 (63.5)	1-1/8 (28.6) 1-1/2 (38.1)	
5/8	(15.9)	5-5/8 (142.9) 7-1/2 (190.5)	4-3/16 (106.4) 5-5/8 (142.9)	3-1/4 (82.6) 4-3/8 (111.1)	2-5/16 (58.7) 3-1/8 (79.4)	1-3/8 (34.9) 1-7/8 (47.6)	
3/4	(19.1)	6-3/4 (171.5) 9 (228.6)	5-1/16 (128.6) 6-3/4 (171.5)	3-15/16 (100.0) 5-1/4 (133.4)	2-13/16 (71.4) 3-3/4 (95.3)	1-5/8 (15.9) 2-1/4 (57.2)	
1	(25.4)	9 (228.6) 12 (304.8)	6-3/4 (171.5) 9 (228.6)	5-1/4 (133.4) 7 (177.8)	3-3/4 (95.3) 5 (127.0)	2-1/4 (57.2) 3 (76.2)	
1-1/4	(31.8)	11-1/4 (285.8) 15 (381.0)	8-7/16 (214.3) 11-1/4 (285.8)	6-9/16 (166.7) 8-3/4 (222.2)	4-3/4 (120.7) 6-1/4 158.8)	2-7/8 (73.0) 3-3/4 (95.3)	

REFERENCE TABLE

A7+ Allowable Stress Design Reference Tables

A7+ Adhesive Edge/Spacing Distance Load Factor Summary for Installation of Threaded Rod and Reinforcing Bar^{1,2}

LOAD FACTOR	DISTANCE FROM EDGE OF CONCRETE
Critical Edge Distance—Tension	
100% Tension Load	 0.75 x Anchor Embedment
Minimum Edge Distance—Tension	
70% Tension Load	 0.25 x Anchor Embedment
Critical Edge Distance—Shear	
100% Shear Load	► 1.25 x Anchor Embedment
Minimum Edge Distance—Shear	
10% Shear Load	► 0.25 x Anchor Embedment
LOAD FACTOR	DISTANCE FROM ANOTHER ANCHOR
Critical Spacing—Tension	
100% Tension Load	► 1.25 x Anchor Embedment
Minimum Spacing—Tension	
80% Tension Load	 0.25 x Anchor Embedment
Critical Spacing—Shear	
100% Shear Load	► 1.25 x Anchor Embedment
Minimum Spacing—Shear	
25% Shear Load	 0.25 x Anchor Embedment

1 Use linear interpolation for load factors at edge distances or spacing distances between critical and minimum.

2 Anchors are affected by multiple combination of spacing and/or edge distance loading and direction of the loading. Use the product of tension and shear loading factors in design.

Combined Tension and Shear Loading—for A7+ Adhesive Anchors

Allowable loads for anchors under tension and shear loading at the same time (combined loading) will be lower than the allowable loads for anchors subjected to 100% tension or 100% shear. Use the following equation to evaluate anchors in combined loading conditions:

$$\left(\frac{Na}{Ns}\right)^{5/3} + \left(\frac{Va}{Vs}\right)^{5/3} \le 1$$

Na = Applied Service Tension Load

Ns = Allowable Tension Load

Va = Applied Service Shear Load

Vs = Allowable Shear Load

TW Red Head[°] Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

RED HEAD 31

A7+ Quick-Cure Adhesive - Tension (lbf) and Shear (lbf)

Rebar	Anchor Diameter (in.)	Embedment Depth (in.)		Shear (Ibf)				
			2500 psi	3000 psi	4000 psi	5000 psi	6000 - 8000 psi	2500 - 8000 psi
		3 3/8	3,663	3,663	3,663	3,663	3,663	3,564
#3	3/8	4 1/2	4,884	4,884	4,884	4,884	4,884	3,564
		7 1/2	6,435	6,435	6,435	6,435	6,435	3,564
		4 1/2	7,446	7,523	7,523	7,523	7,523	6,480
#4	1/2	6	10,030	10,030	10,030	10,030	10,030	6,480
		10	11,700	11,700	11,700	11,700	11,700	6,480
		5 5/8	10,406	11,399	11,542	11,542	11,542	10,044
#5	5/8	7 1/2	15,389	15,389	15,389	15,389	15,389	10,044
		12 1/2	18,135	18,135	18,135	18,135	18,135	10,044
		6 3/4	13,679	14,871	14,871	14,871	14,871	14,256
#6	3/4	9	19,827	19,827	19,827	19,827	19,827	14,256
		15	25,740	25,740	25,740	25,740	25,740	14,256
		7 7/8	17,237	18,883	19,467	19,467	19,467	19,440
#7	7/8	10 1/2	25,955	25,955	25,955	25,955	25,955	19,440
		17 1/2	35,100	35,100	35,100	35,100	35,100	19,440
		9	21,060	23,070	25,115	25,115	25,115	25,596
#8	1	12	32,424	33,486	33,486	33,486	33,486	25,596
		20	46,215	46,215	46,215	46,215	46,215	25,596
		10 3/16	25,363	27,638	31,472	31,472	31,472	32,400
#9	1 1/8	13 1/2	38,845	41,816	41,816	41,816	41,816	32,400
		22 9/16	58,500	58,500	58,500	58,500	58,500	32,400
		11 1/2	30,491	33,018	38,477	43,019	46,227	41,148
#10	1 1/4	15 1/4	46,406	50,835	58,699	61,261	61,261	41,148
		25 7/16	74,295	74,295	74,295	74,295	74,295	41,148

Tabulated values are for estimation puposes only and should not be used for design (please use our TruSpec anchorage design software at www.itwredhead.com) Tabulated values represent design strengths per ACI 318 for a single anchor in adequate concrete thickness, not near an edge nor adjacent achnorage, not for sustained nor seismic loading Bond strengths are for dry, cracked concrete with periodic inspection.

Bond strengths are for Temperature Range A (maximum long term temperature 110F, maximum short term temp 130F).

Threaded Rod- ASTM A193 B7 in Uncracked Concrete

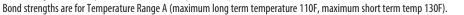
Anchor Diameter (in.)	Embedment Depth (in.)		Shear (lbf)				
		2500 psi	3000 psi	4000 psi	5000 pso	6000 psi - 8000 psi	2500 psi - 8000 psi
3/8	3 3/8	3,871	3,871	3,871	3,871	3,871	3,777
	4 1/2	5,161	5,161	5,161	5,161	5,161	3,777
	7 1/2	7,268	7,268	7,268	7,268	7,268	3,777
	4 1/2	6,881	6,881	6,881	6,881	6,881	6,916
1/2	6	9,175	9,175	9,175	9,175	9,175	6,916
	10	13,305	13,305	13,305	13,305	13,305	6,916
	5 5/8	10,406	10,406	10,406	10,406	10,406	11,018
5/8	7 1/2	14,336	14,336	14,336	14,336	14,336	11,018
	12 1/2	21,188	21,188	21,188	21,188	21,188	11,018
	6 3/4	13,679	14,984	14,984	14,984	15,483	16,309
3/4	9	20,644	20,644	20,644	20,644	20,644	16,309
	15	31,358	31,358	31,358	31,358	31,358	16,309
	7 7/8	17,237	17,740	17,740	17,740	17,740	22,510
7/8	10 1/2	23,654	23,654	23,654	23,654	23,654	22,510
	17 1/2	39,423	39,423	39,423	39,423	39,423	22,510
	9	21,060	23,070	23,070	23,070	23,171	29,530
1	12	30,894	30,894	30,894	30,894	30,894	29,530
	20	51,491	51,491	51,491	51,491	51,491	29,530
	11 1/2	30,419	33,322	38,477	43,019	43,738	47,242
1 1/4	15 1/4	46,406	50,835	57,962	57,962	57,962	47,242
	25 7/16	90,855	90,855	90,855	90,855	90,855	47,242

Tabulated values are for estimation puposes only and should not be used for design (please use our TruSpec anchorage design software at www.itwredhead.com)

Tabulated values represent design strengths per ACI 318 for a single anchor in adequate concrete thickness, not near an edge nor adjacent achnorage, not for sustained nor seismic loading Bond strengths are for dry, cracked concrete with periodic inspection.

Bond strengths are for Temperature Range A (maximum long term temperature 110F, maximum short term temp 130F).

A7+


Quick-Cure Adhesive Uncracked Concrete - Tension (lbf) and Shear (lbf)							
	Embedment Depth (in.)	Carbon Steel A36		Stainless Steel F593		ASTM A193 B7 Threaded Rod	
Anchor Diameter (in.)		Tension (lbf)	Shear (lbf)	Tension (lbf)	Shear (lbf)	Tension (lbf)	Shear (lbf)
	3 3/8	3,375	1,755	3,871	2,280	3,871	3,777
3/8	4 1/2	3,375	1,755	4,787	2,280	5,161	3,777
	7 1/2	3,375	1,755	4,787	2,280	7,268	3,777
1/2	4 1/2	6,173	3,211	6,881	4,044	6,881	6,916
	6	6,173	3,211	8,762	4,044	9,175	6,916
	10	6,173	3,211	8,762	4,044	13,305	6,916
	5 5/8	9,833	5,116	10,752	6,441	10,752	11,018
5/8	7 1/2	9,833	5,116	13,956	6,441	14,336	11,018
	12 1/2	9,833	5,116	13,956	6,441	21,188	11,018
	6 3/4	14,550	7,566	15,483	7,614	15,483	16,309
3/4	9	14,550	7,566	16,500	7,614	20,644	16,309
	15	14,550	7,566	16,500	7,614	31,358	16,309
	7 7/8	17,740	10,446	17,740	10,533	17,740	22,510
7/8	10 1/2	20,085	10,446	22,822	10,533	23,654	22,510
	17 1/2	20,085	10,446	22,822	10,533	39,423	22,510
	9	23,171	13,702	23,171	13,818	23,171	29,530
1	12	26,348	13,702	29,936	13,818	30,894	29,530
	20	26,348	13,702	29,936	13,818	51,491	29,530
1 1/4	11 1/2	38,477	21,925	38,477	22,092	38.477	47,242
	15 1/4	42,158	21,925	47,869	22,092	57,049	47,242
	25 7/16	42,158	21,925	47,869	22,092	90,855	47,242

Threaded Rod in 2,500 - 8,000 psi

Bond strengths are for dry, cracked concrete with periodic inspection.

Tabulated values represent design strengths per ACI 318 for a single anchor in adequate concrete thickness, not near an edge nor adjacent achnorage, not for sustained nor seismic loading

Tabulated values are for estimation puposes only and should not be used for design (please use our TruSpec anchorage design software at www.itwredhead.com)

A7+ Quick-Cure Adhesive Rebar- ASTM A615 Grade 60 Steel in Cracked Concrete -Tension (lbf) and Shear (lbf)

Rebar	Anchor Diameter (in.)	Embedment Depth (in.)	Tension (lbf) 2500 - 8000 psi concrete	Shear (lbf) 2500 - 8000 psi concrete	
		3 3/8	1,651	2,311	
#3	3/8	4 1/2	2,201	3,082	
		7 1/2	3,669	3,564	
		4 1/2	2,935	4,109	
#4	1/2	6	3,914	5,479	
		10	6,523	6,480	
		5 5/8	4,586	6,421	
#5	5/8	7 1/2	6,115	8,561	
		12 1/2	10,192	10,044	
	3/4	6 3/4	5,117	7,164	
#6		9	6,823	9,552	
		15	11,372	14,256	
		7 7/8	6,965	9,751	
#7	7/8	10 1/2	9,287	13,002	
		17 1/2	15,478	19,440	
		9	9,097	12,736	
#8	1	12	12,130	16,982	
		20	20,216	25,596	
#9		10 3/16	11,616	16,262	
	1 1/8	13 1/2	15,434	21,607	
		22 9/16	25,726	32,400	
		11 1/2	17,447	24,426	
#10	1 1/4	15 1/4	23,121	32,369	
		25 7/16	38,592	41,148	

Tabulated values are for estimation puposes only and should not be used for design (please use our TruSpec anchorage design software at www.itwredhead.com)

Tabulated values represent design strengths per ACI 318 for a single anchor in adequate concrete thickness, not near an edge nor adjacent achnorage, not for sustained nor seismic loading Bond strengths are for dry, cracked concrete with periodic inspection.

Bond strengths are for Temperature Range A (maximum long term temperature 110F, maximum short term temp 130F).

A7+ Threaded Rod in 2,500 - 8,000 psi Cracked Concrete -Quick-Cure Adhesive Tension (lbf) and Shear (lbf)

Anchor Diameter (in.)	Embedment Depth (in.)	Tension (lbf)	Shear (lbf)			
			Carbon Steel A36	Stainless Steel F593	ASTM A193 B7 Threaded Rod	
	3 3/8	2,318	1,755	2,280	3,245	
3/8	4 1/2	3,091	1,755	2,280	3,777	
	7 1/2	5,151	1,755	2,280	3,777	
	4 1/2	3,071	3,211	4,044	4,300	
1/2	6	4,095	3,211	4,044	5,733	
	10	6,825	3,211	4,044	6,916	
	5 5/8	5,224	5,116	6,441	7,314	
5/8	7 1/2	6,965	5,116	6,441	9,752	
	12 1/2	11,609	5,116	6,441	11,018	
	6 3/4	7,785	7,566	7,614	10,899	
3/4	9	10,380	7,566	7,614	14,532	
	15	17,300	7,566	7,614	16,309	
	7 7/8	8,275	10,446	10,533	11,585	
7/8	10 1/2	11,033	10,446	10,533	15,446	
	17 1/2	18,388	10,446	10,533	22,510	
	9	10,186	13,702	13,818	14,260	
1	12	13,581	13,702	13,818	19,014	
	20	22,635	13,702	13,818	29,530	
1 1/4	11 1/2	17,172	21,925	22,092	24,041	
	15 1/4	22,757	21,925	22,092	31,860	
	25 7/16	37,984	21,925	22,092	47,242	

Tabulated values are for estimation puposes only and should not be used for design (please use our TruSpec anchorage design software at www.itwredhead.com)

Tabulated values represent design strengths per ACI 318 for a single anchor in adequate concrete thickness, not near an edge nor adjacent achnorage, not for sustained nor seismic loading Bond strengths are for dry, cracked concrete with periodic inspection.

Bond strengths are for Temperature Range A (maximum long term temperature 110F, maximum short term temp 130F).

MASONRY DESIGN TABLE

A7+ Quick-Cure Adhesive Grout-filled Concrete Block: Allowable Tension and Shear Loads based on Steel Design Information for U.S. Customary Unit Threaded Rod^{1, 2, 3}

		Tension (lb)			Shear (lb)	
Anchor Diameter (in.)	ASTM A307 F _u = 60 ksi	ASTM A193 Grade B7 F _u = 125 ksi	ASTM F593 SS 304 F _u = 100 ksi	ASTM A307 F _u = 60 ksi	ASTM A193 Grade B7 F _u = 125 ksi	ASTM F593 SS 304 F _u = 100 ksi
3/8	2,185	4,555	3,645	1,125	2,345	1,875
1/2	3,885	8,100	6,480	2,000	4,170	3,335
5/8	6,075	12,655	10,125	3,130	6,520	5,215
3/4	8,750	18,225	12,390	4,505	9,390	6,385

For SI: 1 inch = 25.4mm, 1 lbf = 4.45N, 1ft-lbf = 1.356 N-M, 1 psi = 0.006895 MPa

¹Allowable load used in the design must be the lesser of bond values and tabulated steel element values.

²Allowable tension and shear loads for threaded rods to resist short term loads, such as wind or seismic, must be calculated in accordance with Section 4.1 as applicable.

³Allowable steel loads are based on allowable tension and shear stresses equal to 0.33X Fu and 0.17xFu, respectively.

MASONRY DESIGN TABLE

A7+ Quick-Cure Adhesive Grout-filled Concrete Block: Allowable Tension Loads for Threaded Rod ^{1, 2, 3, 4, 7, 9, 10, 11, 12}

Anchor	Minimum	Londote		Spacing⁵		Edge Distance ⁶				
Diameter (in.)	Embedment (inches)	Load at s _c and c _c (lb)	Critical s _{cr} (inches)	Minimum s _{min} (inches)	Load reduction factor for s _{min} ^s	Critical c _{cr} (inches)	Minimum c _{min} (inches)	Load reduction factor for c _{min} ^s		
3/8	3 3⁄8	1,125	13.5	4	1.00	12	4	1.00		
1/2	4 1/2	1,695	18	4	0.60	20	4	0.90		
5/8	5 5%	2,015	22.5	4	0.60	20	4	0.90		
3/4	6 ¾	3,145	27	4	0.60	20	4	0.63		

MASONRY DESIGN TABLE

Grout-filled Concrete Block: Allowable Shear Loads for Threaded Rod ^{1, 2, 3, 4, 7, 9, 10, 11, 12}

Andrea	M			Spacing⁵		Edge Distance ⁶					
Anchor Diameter (in.)	Minimum Embedment (inches)	Load at s _{cr} and c _{cr} (lb)	Critical s _{cr} Minimum s _{min} (inches) (inches)		Load reduction factor for s _{min} ⁸	Critical c _c (inches)	Minimum c _{min} (inches)	Load reduction factor for c _{min} ⁸			
3/8	3 3⁄8	750	13.5	4	0.50	12	4	0.95			
1/2	4 1⁄2	1,520	18	4	0.50	20	4	0.44			
5/8	5 5%	2,285	22.5	4	0.50	12	4	0.26			
3/4	6 ¾	2,345	27	4	0.50	20	4	0.26			

For SI: 1 inch = 25.4mm, 1 lbf = 0.0044 kN, 1 ksi = 6.894 MPa. (Refer to Table 4 for footnotes)

¹All values are for anchors installed in fully grouted concrete masonry with minimum masonry strength of 1500 psi (10.3 MPa). Concrete masonry units must be light-, medium, or normal-weight conforming to ASTM C 90. Allowable loads have been calculated using a safety factor of 5.0.

³Anchors may be installed in any location in the face of the masonry wall (cell, web, bed joint) as shown in Figure 2.

⁴A maximum of two anchors may be installed in a single masonry cell in accordance with the spacing and edge or end distance requirements. Embedment is measured from the outside surface of the concrete masonry unit to the embedded end of the anchor. See Figure 2 of this report.

⁵The critical spacing distance, scr, is the anchor spacing where full load values in the table may be used. The minimum spacing distance, smin, is the minimum anchor spacing for which values are available and installation is permitted. Spacing distance is measured from the centerline to centerline between two anchors.

⁶The critical edge or end distance, ccr, is the distance where full load values in the table may be used. The minimum edge or end distance, cmin, is the minimum distance for which values are available and installation is permitted. Edge or end distance is measured from anchor centerline to the closest unrestrained edge.

⁷The tabulated values are applicable for anchors in the ends of grout-filled concrete masonry units where minimum edge distances are maintained.

⁸Load values for anchors installed less than scr and ccr must be multiplied by the appropriate load reduction factor based on actual spacing (s) or edge distance (c). Load factors are multiplicative; both spacing and edge reduction factors must be considered.

⁹Linear interpolation of load values between minimum spacing (smin) and critical spacing (scr) and between minimum edge or end distance (cmin) and critical edge or end distance (ccr) is permitted.

¹⁰Concrete masonry width (wall thickness) must be equal to or greater than 1.5 times the anchor embedment depth (e.g. 3/8-inch- and 1/2-inch-diameter anchors are permitted in minimum nominally 6-inch-thick concrete masonry). The

5/8- and 3/4-inch-diameter anchors must be installed in minimum nominally 8-inch-thick concrete masonry.

¹¹Allowable loads must be the lesser of the adjusted masonry or bond values tabulated above and the steel strength values given in Table 2.

¹²Tabulated allowable bond loads must be adjusted for increased in-service base material temperatures in accordance with Figure 1, as applicable.

MASONRY DESIGN TABLE

Grout-filled Concrete Block: Allowable Tension and Shear Loads for Rebar^{1, 2, 3}

Dehericies	Tension (lb)	Shear (lb)
Rebar Size	ASTM A615, Grade 60	ASTM A615, Grade 60
No. 3	3,270	1,685
No. 4	5,940	3,060
No. 5	9,205	4,745
No. 6	13,070	6,730

For SI: 1 inch = 25.4mm, 1 lbf = 4.45N, 1ft-lbf = 1.356 N-M, 1 psi = 0.006895 MPa

Ouick-Cure Adhesive

1Allowable load used in the design must be the lesser of bond values and tabulated steel element values.

2Allowable tension and shear loads for threaded rods to resist short term loads, such as wind or seismic, must be calculated in accordance with Section 4.1 as applicable.

3Allowable steel loads are based on allowable tension and shear stresses equal to 0.33X Fu and 0.17xFu, respectively.

MASONRY DESIGN TABLE

Grout-filled Concrete Block: Allowable Tension Loads for Rebar ^{1, 2, 3, 4, 7, 9, 10, 11, 12}

Anchor	Minimum	Londote		Spacing⁵		Edge Distance ⁶				
Diameter (in.)	Embedment (inches)	Load at s _{cr} and c _{cr} (lb)	Critical s _{cr} Minimum s _{min} (inches) (inches)		Load reduction factor for s _{min} ^s	Critical c _c (inches)	Minimum c _{min} (inches)	Load reduction factor for c _{min} ^s		
3/8	3 3%	1,530	13.5	4	1.00	12	4	1.00		
1/2	4 1⁄2	1,845	18	4	0.60	20	4	0.90		
5/8	5 5%	2,465	22.5	4	0.60	20	4	0.90		
3/4	6 ¾	2,380	27	4	0.60	20	4	0.63		

MASONRY DESIGN TABLE

A7+ *Quick-Cure Adhesive* **Grout-filled Concrete Block: Allowable Shear Loads for Rebar**^{1, 2, 3, 4, 7, 9, 10, 11, 12}

Anshar	Minimum	loadate		Spacing⁵		Edge Distance ⁶				
Anchor Diameter (in.)	Minimum Embedment (inches)	Load at s _{cr} and c _{cr} ⊥ to edge (lb)	Critical s _{cr} (inches)	Minimum s _{min} (inches)	Load reduction factor for s _{min} ^s	Critical c _ơ (inches)	Minimum c _{min} (inches)	Load reduction factor for c _{min} ⁸		
3/8	3 3⁄8	1,410	13.5	4	0.50	12	4	0.95		
1/2	4 1⁄2	1,680	18	4	0.50	20	4	0.44		
5/8	5 5%	3,245	22.5	4	0.50	12	4	0.26		
3/4	6 ¾	4,000	27	4	0.50	20	4	0.26		

For SI: 1 inch = 25.4 mm; 1 lbf = 0.0044 kN, 1 ksi = 6.894 MPa.

(The following footnotes apply to both Tables 6 and 7)

1All values are for anchors installed in fully grouted concrete masonry with minimum masonry strength of 1500 psi (10.3 MPa). Concrete masonry units must be light-, medium, or normal-weight conforming to ASTM C 90. Allowable loads have been calculated using a safety factor of 5.0.

3Anchors may be installed in any location in the face of the masonry wall (cell, web, bed joint) as shown in figure 2.

4A maximum of two anchors may be installed in a single masonry cell in accordance with the spacing and edge or end distance requirements. Embedment is measured from the outside surface of the concrete masonry unit to the embedded end of the anchor. See Figure 2 of this report.

5The critical spacing distance, scr, is the anchor spacing where full load values in the table may be used. The minimum spacing distance, smin, is the minimum anchor spacing for which values are available and installation is permitted. Spacing distance is measured from the centerline to centerline between two anchors.

6The critical edge or end distance, ccr, is the distance where full load values in the table may be used. The minimum edge or end distance, cmin, is the minimum distance for which values are available and installation is permitted. Edge or end distance is measured from anchor centerline to the closest unrestrained edge.

7The tabulated values are applicable for anchors in the ends of grout-filled concrete masonry units where minimum edge distances are maintained.

8Load values for anchors installed less than scr and ccr must be multiplied by the appropriate load reduction factor based on actual spacing (s) or edge distance (c). Load factors are multiplicative; both spacing and edge reduction factors must be considered.

9Linear interpolation of load values between minimum spacing (smin) and critical spacing (scr) and between minimum edge or end distance (cmin) and critical edge or end distance (ccr) is permitted.

10Concrete masonry width (wall thickness) must be equal to or greater than 1.5 times the anchor embedment depth (e.g. No. 3 and No. 4 reinforcing bars are permitted in minimum nominally 6-inch-thick concrete masonry). No. 5 and No. 6 reinforcing bars must be installed in minimum nominally 8-inch-thick concrete masonry.

11Allowable loads must be the lesser of the adjusted masonry or bond values tabulated above and the steel strength values given in Table 4.

12Tabulated allowable bond loads must be adjusted for increased in-service base material temperatures in accordance with Figure 1, as applicable.

C6+

High Strength Epoxy for All Conditions

C6P-20

DESCRIPTION/SUGGESTED SPECIFICATIONS*

*Suggested Specifications see page 44

One product for most environmental conditions and weather conditions

Design and use with confidence with Epcon C6+ featuring 35% greater bond strength than the closest competition in 70° cracked concrete, and better performance in dry, saturated and water filled conditions.

ADVANTAGES

- Higher average bond strength than competition in cracked concrete
- Excellent performance in diamond cored and oversized holes.
- Better performance in dry, saturated, and waterfilled conditions.
- Safe & durable to use at job sites (cartridges vs. sausage packs)

Curing Times

- Simplifies specification process by providing a comprehensive list of 3rd-party approvals
- 24-month shelf life.
- One formula for both solid and hollow base materials.

Easy to open, snap-off tip, no cutting required


39

BASE MATERIAL	GEL	FULL
(F°/C°)	TIME ²	CURE TIME
104°/ 40°	3 minutes	3 hours
95°/ 35°	4 minutes	4 hours
86°/ 30°	6 minutes	5 hours
77°/ 25°	8 minutes	6 hours
72°/ 22°	11 minutes	7 hours
59°/ 15°	15 minutes	8 hours
50°/ 10°	20 minutes	12 hours
40°/ 4.4°	20 minutes	24 hours

¹ For concrete temperatures between 40-50°F adhesive must be maintained at a minimum of 50°F during installation.

 2 Gel time is max time from the end of mixing to when the insertion of the threaded rod or rebar into the adhesive shall be completed.

INSTALLATION STEPS

*Damp, submerged, and underwater applications require 4x's aire, 4x's brushing, and 4x's air

C6+

riouuci category	raitino.	Description	carton gry							
Epcon C6+ Epoxy					Part	Anchor		Drill Bit	Brush	Overall
Epcon C6+ 20 fl. Oz cartridge	C6P-20	Epcon C6+ 20 fl. oz cartridge	6	Wire Brushes	No.	Dia.	Rebar	Dia.	Dia.	Length
Epcon C6+ 10 fl. Oz		Epcon C6+ 10 fl. oz cartridge, installs with		3/8" Diameter Brush	WB-038	3/8"	No.3	7/16"	5/8"	4-7/8"
cartridge	C6P-10	10oz. dispensing tool	6	1/2" Diameter Brush	WB-012	1/2"	No. 4	9/16"	3/4"	4-7/8"
Mixing Nozzles				5/8" Diameter Brush	WB-058	5/8"	No.5	3/4"	1"	4-7/8"
Mixing Nozzies	1			3/4" Diameter Brush	WB-034	3/4"	No.6	7/8"	1-1/4"	4-7/8"
Mixing Nozzle	A24S	Mixing Nozzle for C6P-10	24	7/8" Diameter Brush	WB-078	7/8"	No. 7	1"	1-1/2"	5-1/8"
M N	655		24	1" Diameter Brush	WB-010	1"	No.7	1-1/8"	1-5/8"	5-1/4"
Mixing Nozzle	S55	Mixing Nozzle for C6P-20	24	1-1/4" Diameter Brush	WB-125	1-1/4"	No. 10	1-3/8"	1-3/4"	5-1/4"
High Flow Mixing Nozzle	S75	High Flow Nozzle for C6P-20 (for 5/8"	24	Brush Extension	ESDS-38	Wire	e brush 12"	usable extens	sion with SDS+	- adaptor
	CREDUT	diameter hole or larger)	~ ~ ~	Brush Extension	EHAN-38	V V	Vire brush 1	2" usable ext	ension with T-H	landle
Mixing Nozzle Extension Dispensing Guns	S75EXT	Nozzle Extension For S75 High Flow Nozzle	24	Hole Plugs	Part No.			Hole Dian	neter	
Dispensing Gun - 10 oz.	A100	Manual Dispenser for C6P-10	1	3/8" Diameter Hole Plug	E038			7/16"		
Dispensing Gun - 20 oz.	E102-V2	Manual Dispenser for C6P-20	1	1/2" Diameter Hole Plug	E012			9/16"		
Pneumatic Dispensing				5/8" Diameter Hole Plug	E058			3/4"		
Gun - 20 oz.	E202	Pneumatic Dispenser for C6P-20	1	3/4" Diameter Hole Plug	E034			7/8"		
Piston Plug				7/8" Diameter Hole Plug	E078			1"		
		Piston Plug for 5/8" and 34" diameter		1" Diameter Hole Plug	E010			1-1/8'		
Piston plugs for deep	PL-5834	anchors	10							
embedment installations greater than 10"	PL-7810	Piston Plug for 7/8" and 1" diameter anchors	10					helater		
	PL-1250	Piston Plug for 1-1/4" diameter anchors	10					Sale of the second		
Extension Tubing								Pril Pril		

1

Qty

10

10

10

10

10

10

10

SB038 - 3/8" Diameter Brush

PL-7810 - Piston plug for 7/8" and 1" diameter anchors

6-Foot Straight Tubing for use with piston

E916-6

plugs

6-Foot Straight Tubing

40

ESTIMATING TABLES

C6P-20 20 Fluid Ounce Cartridge Using Reinforcing Bar with C6+ Adhesive in Solid Concrete

DEDAD								EMBEDN	IENT DEPTH	IN INCHES						
REBAR	DRILL HOLE DIA. INCHES	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
#3	7/16	558.2	279.1	186.1	139.5	111.6	93.0	79.7	69.8	62.0	55.8	50.7	46.5	42.9	39.9	37.2
#4	5/8	273.5	136.7	91.2	68.4	54.7	45.6	39.1	34.2	30.4	27.3	24.9	22.8	21.0	19.5	18.2
#5	3/4	189.9	95.0	63.3	47.5	38.0	31.7	27.1	23.7	21.1	19.0	17.3	15.8	14.6	13.6	12.7
#6	7/8	139.5	69.8	46.5	34.9	27.9	23.3	19.9	17.4	15.5	14.0	12.7	11.6	10.7	10.0	9.3
#7	1	106.8	53.4	35.6	26.7	21.4	17.8	15.3	13.4	11.9	10.7	9.7	8.9	8.2	7.6	7.1
#8	1-1/8	84.4	42.2	28.1	21.1	16.9	14.1	12.1	10.6	9.4	8.4	7.7	7.0	6.5	6.0	5.6
#9	1-1/4	68.4	34.2	22.8	17.1	13.7	11.4	9.8	8.5	7.6	6.8	6.2	5.7	5.3	4.9	4.6
#10	1-1/2	47.5	23.7	15.8	11.9	9.5	7.9	6.8	5.9	5.3	4.7	4.3	4.0	3.7	3.4	3.2
#11	1-3/4	34.9	17.4	11.6	8.7	7.0	5.8	5.0	4.4	3.9	3.5	3.2	2.9	2.7	2.5	2.3

*The estimated number of anchoring installations per cartridge is based upon calculations of filling the hole 60% full of adhesive per the recommendation in our installation instructions. Hole volumes are calculated using ANSI tolerance carbide tipped drill bits. These estimates do not account for any waste.

C6P-20Number of Anchoring Installations Per Cartridge*20 Fluid Ounce CartridgeUsing Threaded Rod with C6+ Adhesive in Solid Concrete

ROD (In.)	DRILL HOLE DIA. INCHES		EMBEDMENT DEPTH IN INCHES													
KUD (III.)	DRILL HULE DIA. INCHES	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1/4	5/16	795.7	397.8	265.2	198.9	159.1	132.6	113.7	99.5	88.4	79.6	72.3	66.3	61.2	56.8	53.0
3/8	7/16	406.0	203.0	135.3	101.5	81.2	67.7	58.0	50.7	45.1	40.6	36.9	33.8	31.2	29.0	27.1
1/2	9/16	245.6	122.8	81.9	61.4	49.1	40.9	35.1	30.7	27.3	24.6	22.3	20.5	18.9	17.5	16.4
5/8	3/4	138.1	69.1	46.0	34.5	27.6	23.0	19.7	17.3	15.3	13.8	12.6	11.5	10.6	9.9	9.2
3/4	7/8	101.5	50.7	33.8	25.4	20.3	16.9	14.5	12.7	11.3	10.1	9.2	8.5	7.8	7.2	6.8
7/8	1	77.7	38.9	25.9	19.4	15.5	13.0	11.1	9.7	8.6	7.8	7.1	6.5	6.0	5.6	5.2
1	1-1/8	61.4	30.7	20.5	15.3	12.3	10.2	8.8	7.7	6.8	6.1	5.6	5.1	4.7	4.4	4.1
1-1/4	1-3/8	41.1	20.5	13.7	10.3	8.2	6.8	5.9	5.1	4.6	4.1	3.7	3.4	3.2	2.9	2.7
1-1/2	1-5/8	29.4	14.7	9.8	7.4	5.9	4.9	4.2	3.7	3.3	2.9	2.7	2.5	2.3	2.1	2.0

*The estimated number of anchoring installations per cartridge is based upon calculations of filling the hole 60% full of adhesive per the recommendation in our installation instructions. Hole volumes are calculated using ANSI tolerance carbide tipped drill bits. These estimates do not account for any waste.

C6P-10 Number of Anchoring Installations Per Cartridge* 8.5 Fluid Ounce Cartridge Using Reinforcing Bar with C6+ Adhesive in Solid Concrete

			-								
DEDAD						EMBEDMENT I	DEPTH IN INCHES				
REBAR	DRILL HOLE DIA. INCHES	1	2	3	4	5	6	7	8	9	10
#3	7/16	169.1	84.6	56.4	42.3	33.8	28.2	24.2	21.1	18.8	16.9
#4	5/8	82.9	41.4	27.6	20.7	16.6	13.8	11.8	10.4	9.2	8.3
#5	3/4	57.6	28.8	19.2	14.4	11.5	9.6	8.2	7.2	6.4	5.8
#6	7/8	42.3	21.1	14.1	10.6	8.5	7.0	6.0	5.3	4.7	4.2
#7	1	32.4	16.2	10.8	8.1	6.5	5.4	4.6	4.0	3.6	3.2
#8	1-1/8	25.6	12.8	8.5	6.4	5.1	4.3	3.7	3.2	2.8	2.6
#9	1-1/4	20.7	10.4	6.9	5.2	4.1	3.5	3.0	2.6	2.3	2.1
#10	1-1/2	14.4	7.2	4.8	3.6	2.9	2.4	2.1	1.8	1.6	1.4
#11	1-3/4	10.6	5.3	3.5	2.6	2.1	1.8	1.5	1.3	1.2	1.1

*The estimated number of anchoring installations per cartridge is based upon calculations of filling the hole 60% full of adhesive per the recommendation in our installation instructions. Hole volumes are calculated using ANSI tolerance carbide tipped drill bits. These estimates do not account for any waste.

C6P-10 8.5 Fluid Ounce Cartridge Using Threaded Rod with C6+ Adhesive in Solid Concrete

DOD (1)						EMBEDMENT D	DEPTH IN INCHES				
ROD (In.)	DRILL HOLE DIA. INCHES	1	2	3	4	5	6	7	8	9	10
1/4	5/16	331.5	165.8	110.5	82.9	66.3	55.3	47.4	41.4	36.8	33.2
3/8	7/16	169.1	84.6	56.4	42.3	33.8	28.2	24.2	21.1	18.8	16.9
1/2	9/16	102.3	51.2	34.1	25.6	20.5	17.1	14.6	12.8	11.4	10.2
5/8	3/4	57.6	28.8	19.2	14.4	11.5	9.6	8.2	7.2	6.4	5.8
3/4	7/8	42.3	21.1	14.1	10.6	8.5	7.0	6.0	5.3	4.7	4.2
7/8	1	32.4	16.2	10.8	8.1	6.5	5.4	4.6	4.0	3.6	3.2
1	1-1/8	25.6	12.8	8.5	6.4	5.1	4.3	3.7	3.2	2.8	2.6
1-1/4	1-3/8	17.1	8.6	5.7	4.3	3.4	2.9	2.4	2.1	1.9	1.7
1-1/2	1-5/8	12.3	6.1	4.1	3.1	2.5	2.0	1.8	1.5	1.4	1.2

*The estimated number of anchoring installations per cartridge is based upon calculations of filling the hole 60% full of adhesive per the recommendation in our installation instructions. Hole volumes are calculated using ANSI tolerance carbide tipped drill bits. These estimates do not account for any waste.

PACKAGING

- Disposable, self-contained cartridge system capable of dispensing both epoxy components in the proper mixing ratio
- Epoxy components dispensed through a static mixing nozzle that thoroughly mixes the material, and places the epoxy at the base of the pre-drilled hole
- 3. Cartridge markings: Include manufacturer's name, batch number and best-used-by date, mix ratio by volume, ANSI hazard classification, and appropriate ANSI handling precautions

SUGGESTED SPECIFICATIONS

EPOXY ADHESIVE

High Strength EPOXY ADHESIVE:

- 1. Two component resin and hardener, non-sag paste, insensitive to moisture, grey in color, suitable for extreme temperature ranges, for all conditions or substrate materials.
- 2. Meets NSF Standard 61, certified for use in conjunction with drinking water systems.
- 3. Works in wet, damp, and submerged hole.
- 4. Extended Shelf life: Best if used within 2 years.
- 5. Oversized and/or diamond cored holes permitted.
- 6. Recommended storage: 40°F 80°F

PERFORMANCE TABLE

Bond Strength Design Information For Fractional Threaded Rod^{1,7}

					1	lominal Th	readed Ro	od Diamete	er	
	Design Information	Symbol	Units	3/8″	1/2″	5/8"	3.4″	7/8″	1″	1-1/4″
		h	in	1-5/8″	2″	2-1/2″	3-1/2″	4	4	5
Minimu	m Effective Installation Depth	h _{ef,min}	mm	60	70	79	89	102	102	127
Maximu	m Effective Installation Depth	h.	in	7-1/2	10	12-1/2	15	17-1/2	20	25
IVIdXIIIIU	•	h _{ef,max}	mm	191 254 318 381 445 508						635
ure 25	Characteristic Bond Strength in	τ _{k,uncr}	psi				1,350			
Temperature Range A, ²⁵	Uncracked Concrete	*K,UIICI	N/mm ²				9.3			
emp	Characteristic Bond Strength in	-	psi	1,150	1,090	1,025	965	900	840	715
	Cracked Concrete	т _{к,сг}	N/mm ²	7.9	7.5	7.1	5.1	4.7	4.4	3.8
۶. د	Characteristic Bond Strength in		psi				1,030			
Temperature Range B, ^{3,5}	Uncracked Concrete	τ _{k,uncr}	N/mm ²				7.1			
empi	Characteristic Bond Strength in		psi	875	830	780	735	685	640	545
	Cracked Concrete	Tk,cr	N/mm ²	6.1	5.7	5.4	5.1	4.7	4.4	3.8
e 2	Characteristic Bond Strength in		psi				725			
Temperature Range C, ^{4,5}	Uncracked Concrete	τ _{k,uncr}	N/mm ²				5.0			
empi	Characteristic Bond Strength in		psi	620	620	620	620	620	620	620
-	Cracked Concrete	Tk,cr	N/mm ²	4.3	4.3	4.3	4.3	4.3	4.3	4.3
JS ⁶	Dry Concrete	Ød	=				0.65			
ditio	Water-saturated Concrete	Øws	Periodic Inspection		0.55			0.6	65	
Con	Water-filled Hole	Øwf	Per Insp				0.65			
ition	Submerged Concrete	Фsub				0.	65			0.55
stallč	Dry Concrete	Фd					0.65			
ble In	Water-saturated Concrete	Øws	ruous				0.65			
Permissible Installation Conditions 6	Water-filled Hole	Øwf	Continuous Inspection				0.65			
Per	Submerged Concrete	Фsub) –				0.65			

For SI: 1 inch= 25.4 mm, 1 in.² = 645.16 mm², 1 lb = 0.004448 kN

- ¹ Bond strength values correspond to concrete compressive strength *f* c = 2,500 psi. Bond strength values must not be increased for increased concrete compressive strength.
- ² Temperature Range A= Maximum Long Term Temperature: 110°F (43°C); Maximum Short Term Temperature: 130°F (55°C)
- ³ Temperature Range B= Maximum Long Term Temperature: 110°F (43°C); Maximum Short Term Temperature: 162°F (72°C)
- ⁴ Temperature Range C = Maximum Long Term Temperature: 110°F (43°C); Maximum Short Term Temperature: 176°F (80°C)5Short-term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long-term concrete temperatures are roughly constant over significant periods of time.
- ⁶ The tabulated value of C applies when the load combinations of Section 1605.2 of the IBC, or ACI 318 Section 9.2 are used in accordance with ACI 318 D.4.3. If the load combinations of ACI 318 Appendix Care used, the appropriate value of Φ must be determined in accordance with ACI318 D.4.4.
- ⁷For sustained loads, bond strengths must be multiplied by 0.73.
- ⁸ See ICC-ES ESR 3577 for further design information in accordance with ACI 318

PERFORMANCE TABLE

Bond Strength Design Information For Fractional Reinforcing Bar^{1,7}

		-										
						Nominal Th	readed B	ar Diamete	r			
	Design Information	Symbol	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 10		
		h	in	1-5/8″	2″	2-1/2″	3-1/2″	4	4	5		
Minimu	m Effective Installation Depth	h _{ef,min}	mm	60	70	79	89	102	102	127		
Maximu	m Effective Installation Donth	h.	in	7-1/2	10	12-1/2	15	17-1/2	20	25		
IVIdXIIIIU	m Effective Installation Depth	h _{ef,max}	mm	191 254 318 381 445 508						635		
275 UTP	Characteristic Bond Strength in	τ _{k,uncr}	psi				1,350					
eratı Je A,	Uncracked Concrete	чк, uncr	N/mm ²				9.3					
Tem perature Range A, ²⁵	Characteristic Bond Strength in	_	psi	1,150	1,090	1,025	965	900	840	715		
н	Cracked Concrete	τ _{k,cr}	N/mm ²	7.9	7.5	7.1	5.1	4.7	4.4	3.8		
s s	Characteristic Bond Strength in		psi	1,030								
Temperature Range B, ^{3,5}	Uncracked Concrete	τ _{k,uncr}	N/mm ²				7.1					
empe ange	Characteristic Bond Strength in		psi	875	830	780	735	685	640	545		
B R	Cracked Concrete	Tk,cr	N/mm ²	6.1	5.7	5.4	5.1	4.7	4.4	3.8		
e s	Characteristic Bond Strength in		psi				725					
lemperature Range C, ^{4,5}	Uncracked Concrete	τ _{k,uncr}	N/mm ²				5.0					
empe Range	Characteristic Bond Strength in		psi	620	620	620	620	620	620	620		
5 H	Cracked Concrete	Tk,cr	N/mm ²	4.3	4.3	4.3	4.3	4.3	4.3	4.3		
١S ⁶	Dry Concrete	Φd	Ē				0.65					
litior	Water-saturated Concrete	Øws	Periodic Inspection		0.55			0.0	65			
Conc	Water-filled Hole	Øwf	Per Inspi				0.65					
tion	Submerged Concrete	Фsub				0.	65			0.55		
stalla	Dry Concrete	Фd					0.65					
ole In:	Water-saturated Concrete	Øws	uous				0.65					
Permissible Installation Conditions 6	Water-filled Hole	Øwf	Continuous Inspection				0.65					
Pen	Submerged Concrete	Фsub	0 -				0.65					

For 51: 1 inch= 25.4 mm, 1 in.² = 645.16 mm² , 1 lb = 0.004448 kN

- 1 Bond strength values correspond to concrete compressive strength f c = 2,500 psi. Bond strength values must not be increased for increased concrete compressive strength.
- ² Temperature Range A= Maximum Long Term Temperature: 110' F (43 ' C); Maximum Short Term Temperature: 130'F (55' C)
- ³ Temperature Range B = Maximum Long Term Temperature: 110'F (43 ' C); Maximum Short Term Temperature: 162'F (72'C)
- $^4\,$ Temperature Range C =Maximum Long Term Temperature: 110'F (43'C); Maximum Short Term Temperature: 176' F (80' C)
- ⁵ Short-term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long-term concrete temperatures are roughly constant over significant periods of time.
- ⁶ The tabulated value of C applies when the load combinations of Section 1605.2 of the IBC, or ACI 318 Section 9.2 are used in accordance with ACI 318 D.4.3. If the load combinations of ACI 318 Appendix Care used, the appropriate value of Φ must be determined in accordance with ACI 318 D.4.4.
- ⁷ For sustained loads, bond strengths must be multiplied by 0.73.
- $^{\,8}\,$ See ICC-ES ESR 3577 for further design information in accordance with ACI 318 $\,$

PERFORMANCE TABLE

C6+ Epoxy Adhesive Allowable Tension Loads^{1,2,3} for Threaded Rod Installed in Solid Concrete

	EMBEDMENT		BASED ON ADHESIVE BOND NGTH	ALLOWABLE TENSION LOAD BASED ON STEEL STRENGTH					
THREADED ROD DIA In. (mm)	DEPTH In. (mm)	2000 PSI (13.8 MPa) CONCRETE Lbs. (kN)	4000 PSI (27.6 MPa) CONCRETE Lbbs. (kN)	ASTM A307 (SAE 1018) Lbs. (kN)	ASTM A193 GR. B7 (SAE 4140) Lbs. (kN)	ASTM F593 AISI 304 SS Lbs. (kN)			
3/8 (9.5)	3-3/8 (85.7)	1,800 (8.0)	2,110 (9.4)	2,080 (9.3)	4.340 (19.3)	3,995 (17.8)			
5/6 (5.5)	4-1/2 (114.3)	2,080 (9.2)	2,505 (11.1)	2,080 (9.3)	4,540 (19.5)	(17.0)			
1/2 (12.7)	4-1/2 (114.3)	3,315 (14.8)	4,420 (19.7)	3,730 (16.6)	7,780 (34.6)	7,155 (31,8)			
1/2 (12.7)	6 (152.4)	4,780 (21.3)	4,900 (21.8)	5,730 (10.0)	7,780 (54.8)	7,155 (51.6)			
5/8 (15.9)	5-5/8 (142.9)	4,425 (19.7)	6,130 (27.3)	11,250 (50.0)	12,230 (54.4)	11,250 (50.0)			
5/6 (15.9)	7-1/2 (190.5)	5,660 (25.2)	7,190 (32.0)	11,230 (30.0)	12,230 (34.4)	11,250 (50.0)			
3/4 (19.1)	6-3/4 (171.5)	7,195 (32.0)	7,885 (35.1)	8,490 (37.8)	17,690 (78.7)	14,860 (66.1)			
5/4 (19.1)	9 (228.6)	7,940 (35.3)	10,345 (46.0)	0,490 (57.8)	17,090 (78.7)	14,000 (00.1)			
7/8 (22.2)	7-7/8 (200.0)	8,810 (39.2)	9,430 (41.9)	11,600 (51.6)	25.510 (113.5)	20.925 (02.7)			
7/8 (22.2)	10-1/2 (266.7)	N/A	12,080 (57.0)	11,000 (51.0)	25,510 (113.5)	20,835 (92.7)			
1 (25.4)	9 (228.6)	10,085 (44.9)	11,970 (53.3)	15 100 (67.5)	21 (20 (140.7)	2(5(0 (110.1)			
1 (25.4)	12 (304.8)	12,180 (54.2)	15,545 (69.2)	15,180 (67.5)	31,620 (140.7)	26,560 (118.1)			
1-1/4 (31.8)	11-1/4 (285.8)	13,915 (61.9)	14,245 (63.4)	23,800 (105.9)	49,580 (220.6)	34,670 (154.2)			
1-1/4 (51.8)	15 (381.0)	16,340 (72.7)	19,930 (88.7)	25,000 (105.9)	47,300 (220.0)	54,070 (154.2)			

PERFORMANCE TABLE

C6+ Epoxy Adhesive Allowable Shear Loads^{1,2,3} for Threaded Rod Installed in Solid Concrete

THREADED ROD DIA.	MINIMUM EMBEDMENT		ALLOWABLE SHEAR LOAD BAS ON CONCRETE STRENGTH	ED	ALLOWABLE SHEAR LOAD BASED ON STEEL STRENGTH							
In. (mm)	DEPTH In. (mm)	2000 PSI (13.8 MPa) CONCRETE Lbs. (kN)	4000 PSI (27.6 MPa) CONCRETE Lbs. (kN)	6000 PSI (41.4 MPa) CONCRETE Lbs. (kN)	ASTM A307 (SAE 1018) Lbs. (kN)	ASTM A193 GR. B7 (SAE 4140) Lbs. (kN)	ASTM F593 AISI 304 SS Lbs. (kN)					
3/8 (9.5)	3-3/8 (85.7)	1,300 (5.8)	1,465 (6.5)	1,500 (6.7)	1,040 (4.6)	2,170 (9.7)	1,995 (8.9)					
1/2 (12.7)	4-1/2 (114.3)	2,855 (12.7)	3,145 (14.0)	3,145 (14.0)	1,870 (8.3)	3,895 (17.3)	3,585 (15.9)					
5/8 (15.9)	5-5/8 (142.9)	4,575 (20.3)	4,950 (22.0)	4,950 (22.0)	2,940 (13.1)	6,125 (27.2)	5,635 (25.1)					
3/4 (19.1)	6-3/4 (171.5)	6,430 (28.6)	6,430 (28.6)	6,430 (28.6)	4,250 (18.9)	8,855 (39.4)	7,440 (33.1)					
7/8 (22.2)	7-7/8 (200.0)	N/A	7,575 (33.7)	8,140 (36.2)	5,800 (25.8)	12,760 (56.8)	10,730 (47.7)					
1 (25.4)	9 (228.6)	9,630 (42.8)	10,085 (44.9)	11,600 (51.6)	7,590 (33.8)	15,810 (70.3)	13,285 (59.1)					
1-1/4 (31.8)	11-1/4 (285.8)	16,270 (72.4)	16,270 (72.4)	16,270 (72.4)	11,900 (52.9)	24,790 (110.3)	18,840 (83.8)					

1 Use lower value of either concrete or steel strength for allowable shear load.

2 Allowable loads taken from ICC Evaluation Report #4285 (formerly ICBO).

3 Linear interpolation may be used for intermediate spacing and edge distances.

PERFORMANCE TABLE

C6+ Average Ultimate Tension and Shear Loads^{1,2,3} for Epoxy Adhesive Threaded Rod Installed in Grout Filled Concrete Block

THREADED ROD DIA.	DRILL HOLE DIAMETER In. (mm)	EMBEDMENT DEPTH In. (mm)	ANCHOR LOCATION In. (mm)	ULTIMATE TENSION Lbs. (kN)	ULTIMATE SHEAR Lbs. (kN)
3/8 (9.5)	7/16 (11.1)	3 (76.2)	GROUTED CELL	4,862 (21.6)	N/A
1/2 (12.7)	5/8 (15.9)	3 (76.2)	GROUTED CELL	4,953 (22.0)	N/A
1/2 (12.7)	5/8 (15.9)	6 (152.4)	GROUTED CELL	8,214 (36.5)	N/A
5/8 (15.9)	3/4 (19.1)	5 (127.0)	GROUTED CELL	7,355 (32.7)	N/A
3/4 (19.1)	7/8 (22.2)	6 (152.4)	Note 1	17,404 (77.4)	19,588 (87.1)
3/4 (19.1)	7/8 (22.2)	6 (152.4)	Note 2	17,404 (77.4)	8,668 (38.6)

1 Anchor can be located in grouted cell, "T" joint, or bed joint.

2 Anchor can be located in first grouted cell from edge.

3 Allowable working loads for the single installations under static loading should not exceed 20% (an industry standard) capacity or the allowable load of the anchor rod. Loads based upon testing with ASTM A193, Grade B7 rods.

C6+ Epoxy Adhesive Installed in Solid Concrete, Shallow Embedment

ANCHOR DIAMETER In. (mm)	DRILL HOLE DIAMETER In. (mm)	EMBEDMENT IN CONCRETE In. (mm)	3500 PSI (24.2 MPa) ULTIMATE TENSION Lbs. (kN)										
1/4 (6.4)	5/16 (7.9)	1 (25.4)	1,653 (7.4)										
		2-1/4 (57.2)	2,818 (12.5)										
		3 (76.2)	3,599 (16.0)										
3/8 (9.5)	7/16 (11.1)	1-1/2 (38.1)	3,426 (15.2)										
1/2 (12.7)	9/16 (14.3)	2 (50.8)	6,100 (27.1)										
5/8 (15.9)	3/4 (19.1)	2-1/2 (63.5)	8,775 (39.0)										
3/4 (19.1)	7/8 (22.2)	3 (76.2)	12,625 (56.2)										
7/8 (22.2)	1 (25.4)	3-1/2 (88.9)	18,650 (83.0)										
1 (25.4)	1-1/8 (28.6)	4 (101.6)	25,034 (111.4)										
1-1/4 (31.8)	1-3/8 (34.9)	5 (127.0)	37,100 (165.0)										

1 Allowable working loads for the single installations under static loading should not exceed 25% capacity or the allowable load of the anchor rod.

2 Ultimate load values in 2000, 4000, and 6000 psi stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on the use of high strength threaded rod (ASTM A193 Gr. B7). The use of lower strength rods will result in lower ultimate tension and shear loads.

3 Linear interpolation may be used for intermediate spacing and edge distances (see page 35).

C6+ Epoxy Adhesive Installed in Solid Concrete

-				ULTIMATE TENSILE AND YIELD STRENGTH						
REINFORCING BAR	EMBEDMENT IN CONCRETE	2000 PSI (13.8 MPa) CONCRETE	4000 PSI (27.6 MPa) CONCRETE		ID YIELD STRENGTH 60 REBAR					
In. (mm)	In. (mm)	ULTIMATE TENSION Lbs. (kN)	ULTIMATE TENSION Lbs. kN)	MINIMUM YIELD STRENGTH Lbs. (kN)	MINIMUM ULTIMATE TENSILE STRENGTH Lbs. (kN)					
# 3 (9.5)	3-3/8 (85.7)	7,020 (31.2)	9,200 (40.9)	6,600 (29.4)	9,900 (44.0)					
	4-1/2 (114.3)	9,000 (40.1)	11,540 (51.3)	6,600 (29.4)	9,900 (44.0)					
#4 (12.7)	4-1/2 (114.3)	11,940 (53.1)	15,140 (67.3)	12,000 (53.4)	18,000 (80.1)					
	6 (152.4)	16,703 (74.3)	18,880 (84.0)	12,000 (53.4)	18,000 (80.1)					
# 5 (15.9)	5-5/8 (142.9)	14,120 (62.8)	27,740 (123.4)	18,600 (82.7)	27,900 (124.1)					
	7-1/2 (190.5)	20,040 (89.1)	30,727 (136.7)	18,600 (82.7)	27,900 (124.1)					
#6 (19.1)	6-3/4 (171.5)	17,940 (79.8)	29,200 (129.9)	26,400 (117.4)	39,600 (176.2)					
	9 (228.6)	25,520 (113.5)	41,640 (185.2)	26,400 (117.4)	39,600 (176.2)					
	10 (254.0)	N/A	45,000 (200.2)	26,400 (117.4)	39,600 (176.2)					
#7 (22.2)	7-7/8 (200.0)	N/A	45,850 (204.0)	36,000 (160.1)	54,000 (240.2)					
	10-1/2 (266.7)	N/A	60,375 (268.6)	36,000 (160.1)	54,000 (240.2)					
	13 (330.2)	N/A	65,300 (290.5)	36,000 (160.1)	54,000 (240.2)					
# 8 (25.4)	9 (228.6)	30,960 (137.7)	54,180 (241.1)	47,400 (210.9)	71,100 (316.3)					
	12 (304.8)	30,960 (137.7)	65,420 (291.0)	47,400 (210.9)	71,100 (316.3)					
	16 (406.4)	N/A	86,700 (385.7)	47,400 (210.9)	71,100 (316.3)					
# 9 (28.6)	10-1/8 (257.2)	N/A	61,530 (273.7)	60,000 (266.9)	90,000 (400.4)					
	13-1/2 (342.9)	N/A	81,240 (361.4)	60,000 (266.9)	90,000 (400.4)					
	19 (482.6)	N/A	108,000 (480.4)	60,000 (266.9)	90,000 (400.4)					
# 10 (31.8)	11-1/4 (285.8)	44,600 (198.4)	76,500 (340.3)	76,200 (339.0)	114,300 (508.5)					
	15 (381.0)	49,220 (218.9)	82,320 (366.2)	76,200 (339.0)	114,300 (508.5)					
	19 (482.6)	N/A	120,000 (533.8)	76,200 (339.0)	114,300 (508.5)					

1 Allowable working loads for the single installations under static loading should not exceed 25% ultimate capacity or the allowable load of the anchor rod. Divide by 4.

2 Ultimate load values in 2000 and 4000 psi stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on minimum Grade 60 reinforcing bar. The use of lower strength rods will result in lower ultimate tension and shear loads.

3 SHEAR DATA: Provided the distance from the rebar to the edge of the concrete member exceeds 1.25 times the embedment depth of the rebar, calculate the ultimate shear load for the rebar anchorage as 60% of the ultimate tensile strength of the rebar.

C6+ PERFORMANCE REFERENCE TABLES

Combined Tension and Shear Loading—for Adhesive Anchors

Allowable loads for anchors under tension and shear loading at the same time (combined loading) will be lower than the allowable loads for anchors subjected to 100% tension or 100% shear. Use the following equation to evaluate anchors in combined loading conditions:

 $\left(\frac{Na}{Ns}\right)^{5/3} + \left(\frac{Va}{Vs}\right)^{5/3} \le 1$

Na = Applied Service Tension Load

0.50 x Anchor Embedment

Va = Applied Service Shear Load

Ns = Allowable Tension Load

Vs = Allowable Shear Load

C6+ Adhesive Edge/Spacing Distance Load Factor Summary for Installation of Threaded Rod and Reinforcing Bar^{1,2} LOAD FACTOR **DISTANCE FROM EDGE OF CONCRETE** Critical Edge Distance—Tension 100% Tension Load 1.25 x Anchor Embedment (or greater) Minimum Edge Distance—Tension 70% Tension Load 0.50 x Anchor Embedment Critical Edge Distance—Shear 100% Shear Load 1.25 x Anchor Embedment (or greater) Minimum Edge Distance—Shear 30% Shear Load 0.30 x Anchor Embedment LOAD FACTOR **DISTANCE FROM ANOTHER ANCHOR** Critical Spacing—Tension 100% Tension Load 1.50 x Anchor Embedment (or greater) Minimum Spacina—Tension 75% Tension Load 0.75 x Anchor Embedment Critical Spacing—Shear 1.50 x Anchor Embedment (or greater)

1 Use linear interpolation for load factors at edge distances or spacing distances between critical and minimum.

2 Anchors are affected by multiple combination of spacing and/or edge distance loading and direction of the loading. Use the product of tension and shear loading factors in design.

100% Shear Load Minimum Spacing—Shear 30% Shear Load

G5

High Strength Epoxy Tested in Accordance with ICC-ES AC308

DESCRIPTION/SUGGESTED SPECIFICATIONS*

The 100% epoxy resin and hardener are completely mixed as they are dispensed from the dual cartridge through a static mixing nozzle, directly into the anchor hole.

Compliant with 2015 IBC. Category 1 performance rating. For use in uncracked, cracked concrete and seismic applications.

ADVANTAGES

FORMULATED FOR HOT OR WARM WEATHER

- Fire rated: tested up to 4hrs FRP
- High strength Epoxy
- 15 minute nozzle life at 70° degrees F

Easy to open, snap-off tip, no cutting required

International Standard Fire Resistance Performance

NON-OFFENSIVE ODOR

Virtually odorless, can be used indoors

Curing Times

-		MADE IN USA
BASE MATERIAL	WORKING	FULL
(F°/C°)	TIME	CURE TIME
110°/ 43°	9 minutes	24 hours
90°/ 32°	9 minutes	24 hours
70°/ 20°	15 minutes	24 hours

RED HEAD

46

APPLICATIONS

Anchoring a concrete traffic barrier wall to concrete bridge deck.

APPROVALS/LISTINGS

ICC -ES Evaluation Report No. ESR-1137

Conforms to ASTM C881-10; Type II & III, Grade 2, Class C with exception of gel time and elongation

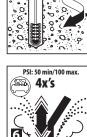
U.S. Department of Transportation Approvals

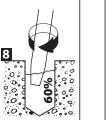
Certified to ANSI/NSF61

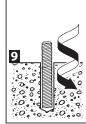
Florida Building Code Approved

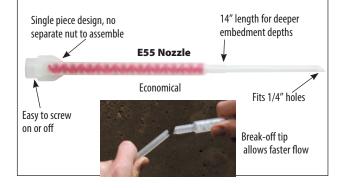
For the most current approvals/listings visit: www.itwredhead.com

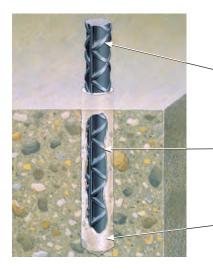
ATION STEPS










.0

Steel column anchoring with threaded rod

FEATURES

RED HEAD

ANCHORAGE TO SOLID CONCRETE

Rebar (shown) or Threaded Rod (carbon or stainless steel) supplied by contractor

G5 adhesive completely fills area between rod and hole creating a stress-free, high load anchorage

Pre-drilled hole in concrete; see performance tables for suggested hole sizes

it W **Red Head** Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at www.itwredhead.com

G5-22 fl. oz. Ordering Information

PART NUMBER	DESCRIPTION	BOX QTY	PART NUMBER	DESCRIPTION	BOX QTY
From the former than the former the former than the former than the former than the former than the former than the former than the former than the former than the former than the former than the former the former than the former than the former than the former than the	G5 Adhesive, 22 Fl. 0z. Cartridge	б			
MARKAN AND AND AND AND AND AND AND AND AND A	Mixing Nozzle for G5-22 Cartridge		3		
	Nozzle diameter fits 3/8" to 5/8" holes		E202	Pneumatic Tool for G5-22 Cartridge	1
E55	(overall length of nozzle 14")	24			
****	Hand Dispenser for G5-22 Cartridges	1			
E102v2	Dispenses both 18 oz. and 22 oz. Cartridges				

Refer to page 56 for ordering information on brushes , hole plugs, and extension tubing for deep holes.

ESTIMATING TABLE

GD 22 Fluid Ounce Cartridge

G5 Number of Anchoring Installations Per Cartridge* Using Reinforcing Bar with G5 Adhesive in Concrete

DEDAD			EMBEDMENT DEPTH IN INCHES														
REBAR	DRILL HOLE DIA. INCHES	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
#3	7/16	439.8	219.9	146.6	109.9	88.0	73.3	62.8	55.0	48.9	44.0	40.0	36.6	33.8	31.4	29.3	
#4	5/8	215.5	107.7	71.8	53.9	43.1	35.9	30.8	26.9	23.9	21.5	19.6	18.0	16.6	15.4	14.4	
#5	3/4	149.6	74.8	49.9	37.4	29.9	24.9	21.4	18.7	16.6	15.0	13.6	12.5	11.5	10.7	10.0	
#6	7/8	109.9	55.0	36.6	27.5	22.0	18.3	15.7	13.7	12.2	11.0	10.0	9.2	8.5	7.9	7.3	
#7	1	84.2	42.1	28.1	21.0	16.8	14.0	12.0	10.5	9.4	8.4	7.7	7.0	6.5	6.0	5.6	
#8	1-1/8	66.5	33.3	22.2	16.6	13.3	11.1	9.5	8.3	7.4	6.7	6.0	5.5	5.1	4.8	4.4	
#9	1-1/4	53.9	26.9	18.0	13.5	10.8	9.0	7.7	6.7	6.0	5.4	4.9	4.5	4.1	3.8	3.6	
#10	1-1/2	37.4	18.7	12.5	9.4	7.5	6.2	5.3	4.7	4.2	3.7	3.4	3.1	2.9	2.7	2.5	
#11	1-3/4	27.5	13.7	9.2	6.9	5.5	4.6	3.9	3.4	3.1	2.7	2.5	2.3	2.1	2.0	1.8	

*The estimated number of anchoring installations per cartridge is based upon calculations of filling the hole 60% full of adhesive per the recommendation in our installation instructions. Hole volumes are calculated using ANSI tolerance carbide tipped drill bits. These estimates do not account for any waste.

ESTIMATING TABLE

G5 22 Fluid Ounce Cartridge

G5 Number of Anchoring Installations Per Cartridge* Using Threaded Rod with G5 Adhesive in Concrete

DOD (im)	DRILL HOLE DIA. INCHES							EMBEDN	AENT DEPTH	IN INCHES						
ROD (in.)	DRILL HOLE DIA. INCHES	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1/4	5/16	862.0	431.0	287.3	215.5	172.4	143.7	123.1	107.7	95.8	86.2	78.4	71.8	66.3	61.6	57.5
3/8	7/16	439.8	219.9	146.6	109.9	88.0	73.3	62.8	55.0	48.9	44.0	40.0	36.6	33.8	31.4	29.3
1/2	9/16	266.0	133.0	88.7	66.5	53.2	44.3	38.0	33.3	29.6	26.6	24.2	22.2	20.5	19.0	17.7
5/8	3/4	149.6	74.8	49.9	37.4	29.9	24.9	21.4	18.7	16.6	15.0	13.6	12.5	11.5	10.7	10.0
3/4	7/8	109.9	55.0	36.6	27.5	22.0	18.3	15.7	13.7	12.2	11.0	10.0	9.2	8.5	7.9	7.3
7/8	1	84.2	42.1	28.1	21.0	16.8	14.0	12.0	10.5	9.4	8.4	7.7	7.0	6.5	6.0	5.6
1	1-1/8	66.5	33.3	22.2	16.6	13.3	11.1	9.5	8.3	7.4	6.7	6.0	5.5	5.1	4.8	4.4
1-1/4	1-3/8	44.5	22.3	14.8	11.1	8.9	7.4	6.4	5.6	4.9	4.5	4.0	3.7	3.4	3.2	3.0
1-1/2	1-5/8	31.9	15.9	10.6	8.0	6.4	5.3	4.6	4.0	3.5	3.2	2.9	2.7	2.5	2.3	2.1

*The estimated number of anchoring installations per cartridge is based upon calculations of filling the hole 60% full of adhesive per the recommendation in our installation instructions. Hole volumes are calculated using ANSI tolerance carbide tipped drill bits. These estimates do not account for any waste.

Tw Red Head

Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

PACKAGING

- 1. Disposable, self-contained 22 ounce cartridge system capable of dispensing both epoxy components in the proper mixing ratio
- 2. Epoxy components dispensed through a static mixing nozzle that thoroughly mixes the material and places the epoxy at the base of the pre-drilled hole
- 3. Cartridge markings: Include manufacturer's name, batch number and best-used-by date, mix ratio by volume, ANSI hazard classification, and appropriate ANSI handling precautions

SUGGESTED SPECIFICATIONS

EPOXY ADHESIVE:

High Strength EPOXY ADHESIVE: USA Made, ARRA Certified

- 1. Odorless, two component resin and hardener, 100% solids (containing no solvents or VOC's), non-sag paste, insensitive to moisture, grey in color, extended working time.
- 2. Works in wet, damp, or submerged holes.
- 3. Conforms to ASTM C881-10; Type II & III, Grade 2, Class C with exception of gel time and elongation.
- 4. Compressive Strength, ASTM D695-02: 14,797 psi minimum.
- 5. Heat Deflection Temperature; 200°F minimum.
- 6. Shelf life: Best if used within 18 months.
- 7. Formulated for use in concrete.
- 8. Oversized and/or Core drilled holes permitted.
- 9. Fire-Resistance Performance of 4 Hours
- 10. Recommended storage: 50°F 80°F

PERFORMANCE TABLE

G5 Epoxy Adhesive Average Ultimate Tension and Shear Loads^{1,2,3} for Threaded Rod Installed in Solid Concrete

THREADED	THREADED MAX. CLAMPING FORCE		EMBE	OMENT		2000 PSI (13.8	MPa) CONCRET	Έ	4	4000 PSI (27.6	6 MPa) CONCRE	TE
ROD DIA. In. (mm)		ROPER CURE os. (Nm)	CONC In. (1		ULTIMATE TENSION Lbs. (kN)		ULTIMATE SHEAR Lbs. (kN)		ULTIMATE TENSION Lbs. (kN)		ULTIMATE SHEAR Lbs. (kN)	
3/8 (9.5)	9	(12.2)	3-3/8	(85.7)	5,060	(22.5)	6,227	(27.7)	8,396	(37.3)	6,227	(27.7)
			4-1/2	(114.3)	6,465	(28.8)	6,227	(27.7)	10,490	(46.7)	6,227	(27.7)
1/2 (12.7)	16	(21.6)	4-1/2	(114.3)	10,484	(46.6)	12,016	(53.5)	13,476	(59.9)	12,016	(53.5)
			6	(152.4)	12,392	(55.1)	12,016	(53.5)	19,166	(85.3)	12,016	(53.5)
			7-1/2	(190.5)	N/	A	12,016	(53.5)	20,572	(91.5)	12,016	(53.5)
5/8 (15.9)	47	(63.5)	5-5/8	(142.9)	14,634	(65.1)	17,547	(78.1)	20,880	(92.9)	17,547	(78.1)
			7-1/2	(190.5)	20,182	(89.8)	17,547	(78.1)	27,939	(124.3)	17,547	(78.1)
			9-3/8	(238.1)	N/A	١	17,547	(78.1)	32,249	(143.5)	17,547	(78.1)
3/4 (19.1)	90	(121.5)	6-3/4	(171.5)	18,966	(84.4)	24,918	(110.8)	29,019	(129.1)	24,918	(110.8)
			9	(228.6)	25,988	(115.6)	24,918	(110.8)	43,812	(194.9)	24,918	(110.8)
			11-1/4	(285.8)	N/A	l	24,918	(110.8)	47,927	(213.2)	24,918	(110.8)
1 (25.4)	276	(372.6)	9	(228.6)	43,804	(194.9)	43,648	(194.2)	53,531	(238.1)	43,648	(194.2)
			12	(304.8)	45,351	(201.6)	43,648	(194.2)	64,022	(284.8)	43,648	(194.2)
			15	(381.0)	N/#		43,648	(194.2)	82,547	(367.2)	43,648	(194.2)

1 Allowable working loads for the single installations under static loading should not exceed 25% (an industry standard) capacity or the allowable load of the anchor rod. Divide by 4.

2 Ultimate load values in 2000 and 4000 psi stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on the use of high strength threaded rod (ASTM A193 Gr. B7). The use of lower strength rods will result in lower ultimate tension and shear loads.

3 Linear interpolation may be used for intermediate spacing and edge distances.

PERFORMANCE TABLE

G5 Allowable Tension Loads¹ for Threaded Rod Installed in Epoxy Adhesive Solid Concrete

THREADED ROD DIA.	MIN. EMBEDMENT		ALLOWABLE TENSION LOAD BASED ALLO ON EPOXY BOND STRENGTH			LOWABLE TENSION LOAD BASED ON STEEL STRENGTH					
In. (mm)	DEPTH In. (mm)	0	SI (13.8 MPa) INCRETE bs. (kN)	COL	l (27.6 MPa) NCRETE s. (kN)	(SAE	l A307 1018) . (kN)		93 GR. B7 4140) (kN)	ASTM AISI 30 Lbs. (04 SS
3/8 (9.5)	3-3/8 (85.7)	1,265	(5.6)	2,092	(9.3)	2,080	(9.3)	4,340	(19.3)	3,995	(17.8)
	4-1/2 (114.3)	1,616	(7.2)	2,622	(11.7)	2,080	(9.3)	4,340	(19.3)	3,995	(17.8)
1/2 (12.7)	4-1/2 (114.3)	3,004	(13.4)	3,369	(15.0)	3,730	(16.6)	7,780	(34.6)	7,155	(31.8)
	6 (152.4)	3,098	(13.8)	4,791	(21.3)	3,730	(16.6)	7,780	(34.6)	7,155	(31.8)
5/8 (15.9)	5-5/8 (142.9)	3,659	(16.3)	5,220	(23.2)	5,870	(26.1)	12,230	(54.4)	11,250	(50.0)
	7-1/2 (190.5)	5,046	(22.4)	6,985	(31.1)	5,870	(26.1)	12,230	(54.4)	11,250	(50.0)
3/4 (19.1)	6-3/4 (171.5)	4,742	(21.1)	7,255	(32.3)	8,490	(37.8)	17,690	(78.7)	14,860	(66.1)
	9 (228.6)	6,497	(28.9)	10,057	(44.7)	8,490	(37.8)	17,690	(78.7)	14,860	(66.1)
1 (25.4)	9 (228.6)	10,951	(48.7)	11,209	(49.9)	15,180	(67.5)	31,620	(140.6)	26,560	(118.1)
	12 (304.8)	11,338	(50.4)	15,923	(70.8)	15,180	(67.5)	31,620	(140.6)	26,560	(118.1)

1 Use lower value of either bond or steel strength for allowable tensile load.

2 Linear interpolation may be used for intermediate spacing and edge distances.

PERFORMANCE TABLE

G5 Allowable Shear Loads^{1,2} for Threaded Rod Installed in Epoxy Adhesive Solid Concrete

THREADED ROD DIA. In. (mm)	MIN. EMBEDMENT DEPTH In. (mm)	ALLOWABLE SHEAR LOAD BASED ON CONCRETE STRENGTH 2000 PSI (13.8 MPa) 4000 PSI (27.6 MPa) ASTM A307 CONCRETE CONCRETE (SAE 1018) Lbs. (kN) Lbs. (kN) Lbs. (kN)		ASTM A307 (SAE 1018)	ALLOWABLE SHEAR LOAD BASI ON STEEL STRENGTH ASTM A193 GR. B7 (SAE 4140) Lbs. (kN)	D ASTM F593 AISI 304 SS Lbs. (kN)
3/8 (9.5)	3-3/8 (85.7)	1,557 (6.9)	1,557 (6.9)	1,040 (4.6)	2,170 (9.7)	1,995 (8.9)
1/2 (12.7)	4-1/2 (114.3)	3,004 (13.4)	3,004 (13.4)	1,870 (8.3)	3,895 (17.3)	3,585 (15.9)
5/8 (15.9)	5-5/8 (142.9)	4,387 (19.5)	4,387 (19.5)	2,940 (13.1)	6,125 (27.2)	5,635 (25.1)
3/4 (19.1)	6-3/4 (171.5)	6,230 (27.7)	6,230 (27.7)	4,250 (18.9)	8,855 (39.4)	7,440 (33.1)
1 (25.4)	9 (228.6)	10,912 (48.5)	10,912 (48.5)	7,590 (33.8)	15,810 (70.3)	13,285 (59.1)

1 Use lower value of either concrete or steel strength for allowable shear load.

2 Linear interpolation may be used for intermediate spacing and edge distances. (See page 49)

Combined Tension and Shear Loading—for G5 Adhesive Anchors

Allowable loads for anchors under tension and shear loading at the same time (combined loading) will be lower than the allowable loads for anchors subjected to 100% tension or 100% shear. Use the following equation to evaluate anchors in combined loading conditions:

 $\left(\frac{\underline{Na}}{Ns}\right)^{+} \left(\frac{\underline{Va}}{Vs}\right) \leq 1$

Na = Applied Service Tension Load

Va = Applied Service Shear Load

Ns = Allowable Tension Load

Vs = Allowable Shear Load

PERFORMANCE TABLE

G5 Average Ultimate Tension Loads^{1,2,3} for Reinforcing Bar Epoxy Adhesive Installed in Solid Concrete

_ pc	y Hunesh		<u>uneu m</u>	JUIL	CUICIE	<u></u>				
REINFORCING BAR In. (mm)	IN CO	EDMENT NCRETE (mm)	IN CO ULTIMA	I (13.8 MPa) DNCRETE TE TENSION 5. (kN)	4000 PS IN CON ULTIMATE Lbs.	TENSION	ULTIMATE TENSILE AND YIELD STRENG GRADE 6D REBAR MINIMUM YIELD MINIMUM UL STRENGTH TENSILE STR Lbs. (kN) Lbs. (k)		JLTIMATE RENGTH	
# 3 (9.5)	3-3/8	(85.7)	7,480	(33.3)	8,090	(35.9)	6,600	(29.4)	9,900	(44.0)
	4-1/2	(114.3)	N/	A	10,488	(46.6)	6,600	(29.4)	9,900	(44.0)
# 4 (12.7)	4-1/2	(114.3)	N	/A	14,471	(64.4)	12,000	(53.4)	18,000	(80.1)
	6	(152.4)	11,235	(50.0)	20,396	(90.7)	12,000	(53.4)	18,000	(80.1)
# 5 (15.9)	5-5/8	(142.9)	N/	A	21,273	(94.6)	18,600	(82.7)	27,900	(124.1)
	7-1/2	(190.5)	18,108	(80.6)	31,863	(141.7)	18,600	(82.7)	27,900	(124.1)
#6 (19.1)	6-3/4	(171.5)	N	/A	27,677	(123.1)	26,400	(117.4)	39,600	(176.2)
	9	(228.6)	29,338	(130.5)	47,879	(212.9)	26,400	(117.4)	39,600	(176.2)
#7 (22.2)	7-7/8	(200.0)	N/	A	43,905	(195.3)	36,000	(160.1)	54,000	(240.2)
	10-1/2	(266.7)	N/	A	52,046	(231.5)	36,000	(160.1)	54,000	(240.2)
# 8 (25.4)	9	(228.6)	N/	A	55,676	(247.7)	47,400	(210.9)	71,100	(316.3)
	12	(304.8)	48,000	(213.5)	77,358	(344.1)	47,400	(210.9)	71,100	(316.3)
# 9 (28.6)	10-1/8	(257.2)	N/	A	62,443	(277.8)	60,000	(266.9)	90,000	(400.4)
	13-1/2	(342.9)	N/	A	71,959	(320.1)	60,000	(266.9)	90,000	(400.4)
# 10 (31.8)	11-1/4	(285.8)	N/	A	70,165	(312.1)	76,200	(339.0)	114,300	(508.5)
	15	(381.0)	N/	A	78,545	(349.4)	76,200	(339.0)	114,300	(508.5)

1 Allowable working loads for the single installations under static loading should not exceed 25% ultimate capacity or the allowable load of the anchor rod. Divide by 4.

2 Ultimate load values in 2000 and 4000 psi stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on the use of minimum Grade 60 reinforcing bar. The use of lower strength rods will result in lower ultimate tension and shear loads.

3 SHEAR DATA: Provided the distance from the rebar to the edge of the concrete member exceeds 1.25 times the embedment depth of the rebar, calculate the ultimate shear load for the rebar anchorage as 60% of the ultimate tensile strength of the rebar.

G5 Average Ultimate Tension Loads^{1,2} for Threaded Rod Epoxy Adhesive Installed in Solid Concrete

THREADED ROD In. (mm)	HOLE DIAMETER In. (mm)	EMBEDMENT IN CONCRETE In. (mm)	≥ 3000 PSI (13.8 MPa) IN CONCRETE ULTIMATE TENSION Lbs. (kN)	
1-1/2 (38.1)	1-3/4 (44.5)	13 (330.2) 17 (431.8) 19 (482.6)	100,250 (490.4) 143,600 (638.8) 150,000 (667.3)	
2 (50.8)	2-1/4 (57.2)	16 (406.4) 17 (431.8)	150,000 (667.3) 169,700 (754.9)	

1 Allowable working loads for the single installations under static loading should not exceed 25% ultimate capacity or the allowable load of the anchor rod.

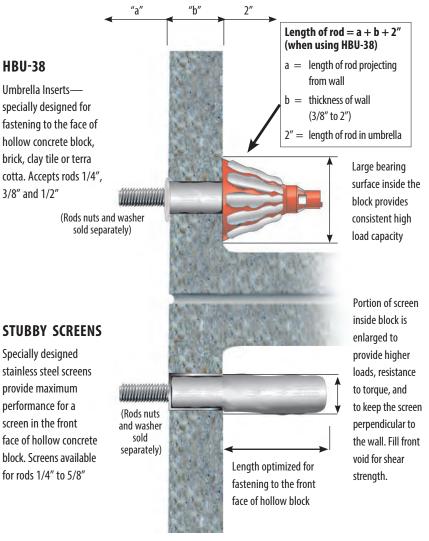
2 Ultimate load values are ≥ 3000 psi in stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on the use of high strength threaded rod (ASTM A193 Gr. B7). The use of lower strength rods will result in lower ultimate tension loads. See chart below.

G5 Adhesive Edge/Spacing Distance Load Factor Summary for Installation of Threaded Rod and Reinforcing Bar ^{1, 2} LOAD FACTOR Critical Edge Distance—Tension 100% Tension Load Minimum Charling Comparison

100% Tension Load	>	1.23 X AIICHUI EIIIDEUIIIEIIL
Minimum Edge Distance—Ter	nsion	
70% Tension Load	>	0.50 x Anchor Embedment
Critical Edge Distance—Shear	r	
100% Shear Load		1.25 x Anchor Embedment
Minimum Edge Distance—Sh	ear	
30% Shear Load		0.30 x Anchor Embedment
LOAD FACTOR		DISTANCE FROM ANOTHER ANCHOR
Critical Spacing—Tension		
100% Tension Load	>	1.50 x Anchor Embedment
Minimum Spacing—Tension		
75% Tension Load		0.75 x Anchor Embedment
Critical Spacing—Shear		
100% Shear Load	>	1.50 x Anchor Embedment
Minimum Spacing—Shear		
30% Shear Load		0.50 x Anchor Embedment

1 Use linear interpolation for load factors at edge distances or spacing distances between critical and minimum.

2 Anchors are affected by multiple combination of spacing and/or edge distance loading and direction of the loading. Use the product of tension and shear loading factors in design.


Umbrella Inserts and Stubby Screens

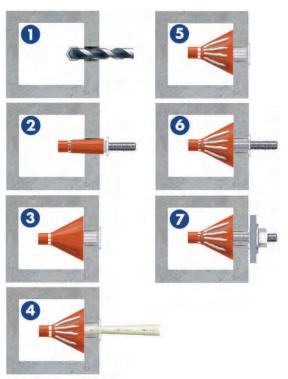
High Performance Adhesive Systems for Fastening to Hollow Base Materials

DESCRIPTION/ADVANTAGES

Hollow Block Fastening with A7+ Adhesive

Section View—Concrete Block

COMBINE WITH A7+ OR C6+ TO CREATE AN ADHESIVE FASTENING SYSTEM IDEAL FOR HOLLOW BLOCK, TERRA COTTA, CLAY TILE, MASONRY AND MORE


- Accepts 1/4", 3/8, and 1/2" threaded rods
- Use with A7+ Acrylic adhesive for fast dispensing, fast curing installation
- Use with C6+ Epoxy for fast curing extended working time installation

Umbrella Inserts and Screens

INSTALLATION STEPS

- Drill 3/4" diameter hole, 3-3/4" deep using rotation only drilling mode and carbide tipped drill bit. Clean out hole with forced air. Complete hole preparation with use of a brush and repeat cleaning with compressed air (leave no dust or slurry).
- Place umbrella on piece of threaded rod, stretch umbrella over the rod by pulling the white collar back approximately 1". Squeeze orange portion of umbrella and push umbrella into hole.
- Push umbrella body through the hole and completely into void. Remove threaded rod. (Do not use in solid base materials. For anchoring into block web, ends and mortar joints, use screens.)
- 4. Dispense and discard a sufficient amount of adhesive from new cartridge until a uniform adhesive mix is achieved. Inject approximately 1-1/2 fl. oz. of adhesive into umbrella (7 to 8 pumps using manual dispenser) to completely fill umbrella.
- **5.** 3/8" rod uses a centering ring (supplied with inserts) to keep rod perpendicular to the wall.
- 6. Insert rod into the filled umbrella using a slow, soft twisting motion until it contacts the back of umbrella.
- 7. Wait for appropriate temperature/cure time before tightening fixture to the recommended torque of 10 ft./lbs.

Installation instructions for stubby screens provided on page 56.

SELECTION CHART		22
Umbrella Inse	rts	
DESCRIPTION	PART NO.	BOX CONTENTS
Umbrella Anchor	HBU-38	20 Umbrellas 20 Centering Rings

SELECTION CHART

Stubby Screens

PART NO.	DESCRIP	QTY/BOX	
HB 14-2	1/4″ x 2″	Stainless Screen	100
HB 38-312	3/8″ x 3-1/2″	Stainless Screen	100
HB 12-312	1/2″ x 3-1/2″	Stainless Screen	50
HB 58-412	5/8″ x 4-1/2″	Stainless Screen	50

ESTIMATING TABLE

Umbrella Using Threaded Rod and Umbrella Inserts with A7+

ROD In (mm)	DRILL HOLE DIA. INCHES		UME OF TRIDGE	UMBRELLA INSERT WITH EMBEDMENT OF 3-3/4"
3/8 (9.5)	3/4	A7+	9.5 fluid oz.	6
		A7+	28 fluid oz.	17

* These estimates do not account for waste.

ESTIMATING TABLE

Stubby Number of Anchoring Installations Per Cartridge* Using Threaded Rod and Screens Stubby Screens with A7+

	Screer	15					
ROD	DRILL HOLE DIA.	VOLUME OF	SCREEN LENGTH PLUS 1 DIAMETER (INCHES)				
In (mm)	INCHES	CARTRIDGE	2″	3-1/2″	4-1/2″		
1/4 (6.4)	3/8	A7+ 9.5 fluid oz.	48				
		A7+ 28 fluid oz.	135				
3/8 (9.5)	1/2	A7+ 9.5 fluid oz.		21			
		A7+ 28 fluid oz.		62			
1/2 (12.7)	5/8	A7+ 9.5 fluid oz.		15			
		A7+ 28 fluid oz.		43			
5/8 (15.9)	3/4	A7+ 9.5 fluid oz.			11		
		A7+ 28 fluid oz.			24		

*These estimates do not account for waste.

PERFORMANCE TABLE

Load Values^{1, 2} Using A7+ in Hollow Concrete Block

	ROD DIA. In. (mm)	MAX CLAMPING FORCE AFTER PROPER CURE FtLbs. (Nm)	DRILL HOLE DIA. In. (mm)	EMBEDMENT (SCREEN LENGTH) In. (mm)	ULTIMATE TENSION Lbs. (Kn)	ULTIMATE SHEAR Lbs. (Kn)
Umbrella	3/8 (9.5)	10 (13)	3/4 (19.1)	3-3/4 (95.3)	3,558 (15.8)	3,109 (13.8)
	1/4 (6.4)	4 (5)	3/8 (9.5)	2 -1/4 (57.1)	1,550 (6.9)	1,900 (8.5)
Stubby Screens	3/8 (9.5)	7 (9)	1/2 (12.7)	3-7/8 (98.4)	1,661 (7.4)	2,071 (9.2)
Stubby Screens	1/2 (12.7)	10 (13)	5/8 (15.9)	4 (101.6)	2,458 (10.9)	4,467 (19.9)
	5/8 (15.9)	13 (17)	3/4 (19.1)	5-1/8 (130.2)	2,543 (10.9)	5,047 (22.4)

1 Allowable working loads should not exceed 20% ultimate capacity. Based upon testing using ASTM A193, Grade B7 rod. Divide by 4.

2 The tabulated values are for anchors installed at a minimum 12 inch edge distance and minimum 8 inch spacing.

Screen Tubes

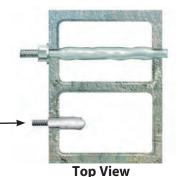
Quality Adhesive Systems for Fastening Through **Block and for Brick Pinning Applications**

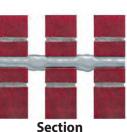
A7P-28

Nylon Screens

DESCRIPTION/SUGGESTED SPECIFICATIONS

Screens Used with A7+


HOLLOW CONCRETE BLOCK


Maximum holding strength in concrete block can be obtained by fastening to both the front and back of the block using an adhesive screen tube and threaded rod.

For attachments to single face of block, see page 53 for information on "umbrella anchors" and "stubby screens"

BRICK WALL

Systems designed for Seismic Retrofit, Brick Pinning or fastening to brick various lengths and diameters available to accommodate site conditions.

HB SERIES—STAINLESS SCREENS

Special version, "dosage control" available for overhead and underwater installations

Available in 1/4" to 3/4" diameters

The no-drip feature of A7+ adhesive makes it particularly well suited for brick pinning applications.

ADVANTAGES

HBP SERIES—NYLON SCREENS

- 30%-50% savings from stainless steel screens
- Comparable performance values
- Easier to insert and span across voids
- Flexible material is less susceptible to damage from crushing

INSTALLATION STEPS

1. Drill hole to the length of the screen plus 1 Clean out hole with forced air. Complete hole preparation with use of a brush and repeat cleaning with forced air (leave no dust or slurry).

diameter, using rotation-only drilling mode.

When starting new cartridge or new nozzle, dispense and discard enough adhesive until uniform adhesive mix is achieved. Insert the nozzle into the bottom of the screen and fill screen completely full (use extension tube if needed to reach bottom of screen).

Corrosion resistant

4. While holding the tab of the screen against the wall, hand insert the selected rod slowly into the screen tube with a slow twisting motion. Pull screen flush to face and coat with adhesive. Wait for appropriate cure time before torquing fixture in place.

Insert the filled screen completely into the hole (subflush).

it W **Red Head** Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at www.itwredhead.com

Screen Tubes

SELECTION CHART

Scroon Tuhos

SUIEE	Tubes	nd stainless	Screen	HDP Nylon Screen		
ROD DIA.	SCREEN LENGTH	STAINLESS ST	TEEL SCREENS	NYLON S	CREENS	
In. (mm)	In. (mm)	PART NO.	QTY/BOX	PART NO.	QTY/BOX	
1/4 (6.4)	6 (152.4)	HB 14-6	100			
1/4 (6.4)	8 (203.2)	HB 14-8	100			
1/4 (6.4)	10 (254.0)	HB 14-10	100			
3/8 (9.5)	6 (152.4)			HBP 38-6	50	
3/8 (9.5)	8 (203.2)			HBP 38-8	25	
3/8 (9.5)	10 (254.0)			HBP 38-10	25	
1/2 (12.7)	6 (152.4)			HBP 12-6	50	
1/2 (12.7)	8 (203.2)			HBP 12-8	25	
1/2 (12.7)	10 (254.0)			HBP 12-10	25	
5/8 (15.9)	6 (152.4)			HBP 58-6	40	
5/8 (15.9)	8 (203.2)			HBP 58-8	40	
5/8 (15.9)	10 (254.0)			HBP 58-10	40	
3/4 (19.1)	8 (203.2)	HB 34-8	20		·	
3/4 (19.1)	10 (254.0)		•	HBP 34-10	20	
3/4 (19.1)	13 (330.2)			HBP 34-13	20	

*Not available in standard strength nylon screens. Longer screens available through specials.

ESTIMATING TABLE

ROD	DRILL HOLE DIA.	VOLUME OF	SCREEN LENGTH (INCHES)			
In (mm)	INCHES	CARTRIDGE	6″	8″	10″	13″
1/4 (6.4)	3/8	A7 9.5 fluid oz.	16	12	10	
		A7 28 fluid oz.	45	35	28	
3/8 (9.5)	1/2	A7 9.5 fluid oz.	12	10	7.5	
		A7 28 fluid oz.	37	29	23	
1/2 (12.7)	5/8	A7 9.5 fluid oz.	9	6	5	
		A7 28 fluid oz.	26	18	14	
5/8 (15.9)	3/4	A7 9.5 fluid oz.	6	5	4	
		A7 28 fluid oz.	18	14	10	
3/4 (19.1)	7/8	A7 9.5 fluid oz.		3	2.5	1.75
		A7 28 fluid oz.		9	6	5

* These estimates do not account for waste.

DESCRIPTION/ADVANTAGES

Hole Plugs

Special plugs make overhead installations easier, centers rod in hole, and keeps adhesive off threads

_	
(CE)	

ROD DIAMETER	HOLE DIAMETER	PART #	QTY
3/8″	7/16″	E038	25
1/2″	9/16″	E012	25
5/8″	3/4″	E058	20
3/4″	7/8″	E034	20
7/8″	1″	E078	10
1″	1-1/8″	E010	10
1-1/4″	1-3/8″	E114	10

Accessor<u>ies</u>

Piston Plugs

Hole Plugs	Part No.	Hole Diameter	Qty
Piston Plug for 5/8" and	PL-5834	3/4"	25
3/4" Diameter Hole	PL-3634	7/8"	25
Piston Plug for 7/8" and		1"	20
1" Diameter Hole	PL-7810	1-1/8"	20
Piston Plug for 1-1/4"	PL-1250	1.0/01	10
Diameter Hole	PL-1250	1-3/8"	10

Wire Brushes

1/8" NPT (National Pipe Thread Taper)

Proper hole cleaning using a brush is essential to achieve optimum performance

-	PART No.	ANCHOR DIA.	REBAR DIA.	DRILL BIT Dia.	OVERALL LENGTH	BRUSH DIA.	QTY/BAG
	WB-038	3/8	No. 3	7/16	4-7/8	5/8	10
	WB-012	1/2	No. 4	5/8	4-7/8	3/4	10
	WB-058	5/8	No. 5	3/4	4-7/8	1.0	10
	WB-34	3/4	No. 6	7/8	4-7/8	1-1/4	10
)	WB-078	7/8	No. 7	1	5-1/8	1-1/2	10
	WB-100	1	No. 8	1-1/8	5-1/4	1-5/8	10
	WB-125	1-1/4	No. 10	1-3/8	5-1/4	1-3/4	10
	ESDS-38	Wire brush 12" usable extension with SDS+ adaptor					
	EHAN-38	W	ire brush 12″ ι	usable extensio	on with T-Hand	dle	1

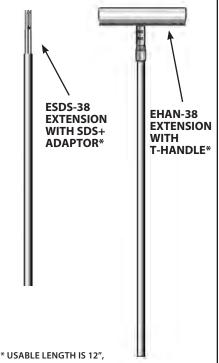
* Proper hole cleaning using a wire brush is essential to achieve optimum performance. Brush may be used up to 50 holes depending on concrete strength. Brushes required for installation of No. 4, No. 8 rebar and larger are available with lead time.

Attaches to Adhesive System nozzles for deep hole

Plastic **Extension Tubing**

2			
	DESCRIPTION	PART #	QTY
	6-Foot Straight Tubing can cut to proper size (.39 in I.D. x .43 in. 0.D.)	E25-6	6
	6-Foot Long Extension Tube for use with Piston Plugs	E916-6	1

Blow Pump

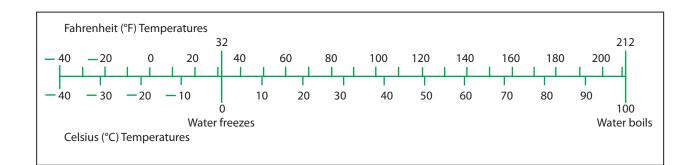

DESCRIPTION	PART #	QTY/BAG	
Blow Pump	BP-10	1	

Minimum hole 7/16".

installations

Wire Brush Extensions

GOOD FOR ALL HOLES EXCEPT 7/16" DIAMETER


IT **W/ Red Head**

Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at $\underline{www.itwredhead.com}$

Conversion Table (soft)

6.35 mm=	1/4″	50 mm =	2″
9.5 mm =	3/8″	98 mm =	3-7/8″
10 mm =	3/8″	100 mm =	4″
12 mm =	1/2″	130 mm =	5-1/8″
16 mm =	5/8″	153 mm =	6″
20 mm =	3/4″	156 mm =	6-1/8″
22 mm =	7/8″	178 mm =	7″
24 mm =	1″	183 mm =	7-1/4″
25 mm =	1″	190 mm =	7-1/2″
30 mm =	1-3/16″	200 mm =	7-7/8″
35 mm =	1-3/8″	213 mm =	8-3/8″
40 mm =	1-1/2″	250 mm =	9-7/8″

Selection Guide Anchors for Concrete Applications

	/	of concrete Ap	
ANCHOR TYPE		KEY FEATURES	SIZE RANGE (Inches)
	Trubolt [®] Wedge Anchors	 2015 IBC Compliant Seismic zone (A-B) approved Fully-threaded Length ID head stamped Stainless steel clip Through-fixture fastening 	Diameter: 1/4 – 1 Length: 1-3/4 – 12
	Trubolt [®] + Seismic Wedge Anchors ID STAMP	2015 IBC Compliant All seismic zone (A-F) and cracked concrete approved Fully-threaded Length ID head stamped Through-fixture fastening	Diameter: 3/8, 1/2, 5/8 & 3/4 Length: 3 – 8-1/2
	Trubolt®+ SS Seismic Wedge Anchors	 2015 IBC Compliant ICC-ES ESR 2427 for Cracked and Uncracked Concrete Patented grooved clip design Meets ductility requirements of ACI 318 D.3 3 Fully threaded Anchor body and clip are Made in the U.5 	Diameter: 1/2 and 5/8 Length: 3-3/4 - 7 5.A.
	Large Diameter Tapcon (LDT) and LDT Self-Threading Anchor	Anti-rotation serrated washer Extra large hex washer head Length ID head stamped Through-fixture fastening	LDT with Zinc Plating Diameter: 3/8 – 3/4 Length: 1-3/4 – 6-1/4 LDTX with EnvireX Coatin Diameter: 3/8 & 1/2 Length: 3 – 5
	Tapcon [®] + Self-Threading Anchor	 Approved for concrete in uncracked, cracked, and seismic conditions Easy installation Blue Climaseal for superior corrosion resistance Removable 	Diameter: 1/4 - 1/2 Length: 2-1/4 - 6
	Boa TM Coil Expansion Anchors	 Heavy-Duty, Reusable Fastening Easy installation Removable High shear strength Zinc plated carbon steel to ASTM B633 SC1, Type III 	Diameter: 1/2 – 3/4 Length: 3 – 6
	Multi-Set II [®] Drop-In Anchors RM RL RX CL	 RM: Flanged body to keep anchor flush with surface of concrete RL: Non-flanged body for recessed setting RX: Designed for hollow core and post tension concrete CL: Designed for one-sided forming, accepts coil rod 	$\begin{array}{c} \textbf{Diameter:} & 1/4 - 3/4 \\ \textbf{Length:} & 1 - 3-3/16 \\ \hline \textbf{Diameter:} & 1/4 - 3/4 \\ \textbf{Length:} & 1 - 3-3/16 \\ \hline \textbf{Diameter:} & 3/8 \& 1/2 \\ \textbf{Length:} & 3/4 - 1 \\ \hline \textbf{Diameter:} & 1/2 \& 3/4 \\ \textbf{Length:} & 2 \& 3-3/16 \\ \hline \end{array}$

TW Red Head^{*} Call our toll free number **800-848-5611** or visit our web site for the most current product and technical information at **www.itwredhead.com**

Selection Guide

	CO	RROSION RESISTANCE	PERFORMANCE	HEAD STYLES	APPROVALS/LISTINGS
Trubolt cont'd		Zinc-plated carbon steel to ASTM B633, SC1, Type III Hot dipped galvanized to ASTM A-153 Type 304 and 316 stainless steel	Ultimate Pullout Performance in 4000 psi Concrete up to 26,540 lbs. (1″ diameter)	Hex nut Tie-Wire version	ICC Evaluation Service, Inc. ESR-2251 Underwriters Laboratories Factory Mutual Caltrans Meets or exceeds U.S. Government G.S.A. Specification A-A-1923A Type 4 (formerly GSA: FF-S-325 Group II, Type 4, Class 1)
Trubolt+ conťď		Zinc-plated carbon steel to ASTM B633, SC1, Type III	Pullout strength of 4,980 lbs in 2,500 psi Cracked Concrete (1/2" diameter).	Hex nut	ICC Evaluation Service, Inc. # ESR-2427 -Category 1 performance rating -2015 IBC compliant -Meets ACI 318 ductility requirements -Tested in accordance with ACI 355.2 & ICC-ES AC193 -Listed for use in seismic zones A, B, C, D, E, & F -3/8", 1/2", 5/8" and 3/4" diameter anchors listed in ESR-2427 City of Los Angeles - #RR25867 Florida Building Code (FBC)
Trubolt+ SS	-	Stainless Steel AISI 316	Pullout strength of 4,980 lbs in 2,500 psi Cracked Concrete (1/2" diameter).	Hex nut	ICC-ES ESR 2427 for cracked and uncracked concrete Apprroved for use in ALL SEISMIC ZONES (A-F) 2015 International Building Code (IBC) 2015 International Residential Code (IRC) Florida Building Code (FBC)
LDT cont'd		Zinc-plated carbon steel to ASTM B695 & B633 Type 410 stainless steel	Ultimate Pullout Performance in 4,000 psi Concrete up to 23,266 lbs.	Finished bolt style	
-	-	Envire Coating Approved for use in ACQ and MCQ I *Excessive content of copper in the	(3/4" diameter) umber*	the anchor finish.	1,000 hours salt spray ASTM B117
Tapcon+ cont'd	-	Blue Climaseal coated for superior corrosion resis- tance	Ultimate Pullout Performance in 4000 psi Concrete up to 38,500 lbs. (3/4" diameter)	Finished bolt style	ICC-EC ESR 3699
Multi-Set II Drop-In cont'd		Zinc-plated carbon steel to ASTM B633, SC1, Type III Type 304 and 316 stainless steel	Ultimate Pullout Performance in 4000 psi Concrete up to 9,480 lbs. (3/4" diameter)	RM: Flanged body RL: Non-flanged body Use any bolt or threaded rod	GSA: A-A-55614 Type 1 (Formerly GSA: FF-S-325 Group VIII) Underwriters Laboratories Factory Mutual Caltrans
Dynabolt conťď		Zinc-plated carbon steel to ASTM B633, SC1, Type III Type 304 stainless steel	Ultimate Pullout Performance in 4000 psi Concrete up to 8,900 lbs. (3/4" diameter)	Flat head Hex nut Acorn nut Tie-Wire Round head Threshold flat head	GSA: A-A-1922A (Formerly GSA: FF-S-325 Group II, Type 3, Class 3) Factory Mutual

RED HEAD

Anchors for Concrete Applications

continued from pages 50-51

Selection Guide cont'd

	CORROSION RESISTANCE	PERFORMANCE	HEAD STYLES	APPROVALS/LISTINGS
Tapcon cont'd	 Patented Trade Secret Climaseal[®] coating Type 410 stainless steel The above is for the Original and 410 SS Ta For data on other Tapcon products see thei Tapcon Maxi-Set on page 94, Tapcon SCOTS Tapcon StormGuard on page 100. 	r product pages as follows:	Hex head Phillips flat head nd	Blue Climaseal™ ICC Evaluation Service, Inc.— ESR-1671 ICC Evaluation Service, Inc.— ESR-2202 Miami-Dade County Florida Building Code 410 Stainless Steel Miami-Dade County Florida Building Code
Hammer- Set cont'd	Zinc alloy	Ultimate Pullout Performance in 4000 psi Concrete up to 793 lbs.	Mushroom head	GSA: A-A-1925A Type 1 (zinc mushroom) (Formerly GSA: FF-S-325 Group V, Type 2, Class 3)
Boa Coil cont'd	Zinc plated carbon steel to ASTM B633, SC1, Type III	Ultimate Pullout Performance in 4000 psi Concrete up to 38,500 lbs. (3/4" diameter)	Finished bolt style	

Because applications vary, ITW RED HEAD cannot guarantee the performance of this product. Each customer assumes all responsibility and risk for the use of this product. The safe handling and the suitability of this product for use is the sole responsibility of the customer. Specific job site conditions should be considered when selecting the proper product. Should you have any questions, please call the Technical Assistance Department at 800-848-5611.

Trubolt® Wedge Anchors

Dependable, Heavy-Duty, Inspectable, Wedge Type Expansion Anchor

DESCRIPTION/SUGGESTED SPECIFICATIONS

Wedge Type Anchors—

SPECIFIED FOR ANCHORAGE INTO CONCRETE

Trubolt Wedge anchors feature a stainless steel expansion clip, threaded stud body, nut and washer. Anchor bodies are made of plated carbon steel, hot-dipped galvanized carbon steel, type 304 stainless steel or type 316 stainless steel as identified in the drawings or other notations.

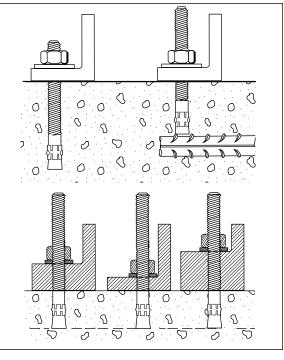
The exposed end of the anchor is stamped to identify anchor length. Stampings should be preserved during installation for any subsequent embedment verification.

Use carbide tipped hammer drill bits made in accordance with ANSI B212.15-1994 to install anchors.

Anchors are tested to ACI 355.2 and ICC-ES AC193. Anchors are listed by the following agencies as required by the local building code: ICC-ES, UL, FM, and Caltrans.

See Appendix B (pages 106-107) for performance values in accordance to

2015 IBC.


ADVANTAGES

- 2015 International Building Code (IBC) Compliant for 1/4" through 1/2" diameters-carbon steel
- Versatile fully threaded design is standard on sizes up to 1" diameter and 10" length
- Anchor diameter equals hole diameter
- Standard carbon and stainless steel anchors
- Non bottom-bearing, may be used in hole depth exceeding anchor length
- Can be installed through the work fixture, eliminating hole spotting
- Inspectable torque values, indicating proper installation

2015 IBC Compliant Advantage

Trubolt's fully threaded feature eliminates subsurface obstruction problems.

Fully threaded design accommodates various material thicknesses at the same embedment. One anchor length saves time and money.

Trubolt

Wedge Anchors

Trubolt Anchors

APPLICATIONS

Anchoring machinery and conveyors is a common wedge anchor application. The Trubolt is fully threaded to allow a large range of embedment and fixture thickness.

Length ID Head Stamp-provides for

embedment inspection after installation

Cold-Formed—manufacturing process

Stainless steel split expansion ring

Anchor Body—available in zinc-plated steel, hot-dipped galvanized steel, 304

stainless steel and 316 stainless steel

Fully Threaded Design

adds strength

LENGTH INDICATION CODE*

CODE	LENGTH OF ANCHOR		CODE	LENG	TH OF ANCHOR
A	1-1/2 < 2	(38.1 < 50.8)	K	6-1/2 < 7	(165.1 < 177.8)
В	2 < 2-1/2	(50.8 < 63.5)	L	7 < 7-1/2	(177.8 < 190.5)
C	2-1/2 < 3	(63.5 < 76.2)	М	7-1/2 < 8	(190.5 < 203.2)
D	3 < 3-1/2	(76.2 < 88.9)	N	8 < 8-1/2	(203.2 < 215.9)
E	3-1/2 < 4	(88.9 < 101.6)	0	8-1/2 < 9	(215.9 < 228.6)
F	4 < 4-1/2	(101.6 < 114.3)	Р	9 < 9-1/2	(228.6 < 241.3)
G	4-1/2 < 5	(114.3 < 127.0)	Q	9-1/2 < 10	(241.3 < 254.0)
Н	5 < 5-1/2	(127.0 < 139.7)	R	10 < 11	(254.0 < 279.4)
I	5-1/2 < 6	(139.7 < 152.4)	S	11 < 12	(279.4 < 304.8)
J	6 < 6-1/2	(152.4 < 165.1)	T	12 < 13	(304.8 < 330.2)

*Located on top of anchor for easy inspection.

EATURES

TRUBOLT[®] WEDGE ANCHOR

APPROVALS/LISTINGS

Trubolt[®] Wedge Anchors

ICC Evaluation Service, Inc. ESR-2251

- Category 1 performance rating
- 2015 IBC compliant
- Meets ACI 318 ductility requirements
- Tested in accordance with ACI 355.2 and ICC-ES AC193
- For use in seismic zones A & B
- 1/4", 3/8" & 1/2" diameter anchors listed in ESR-2251

Underwriters Laboratories

Factory Mutual

Caltrans

Meets or exceeds U.S. Government G.S.A. Specification A-A-1923A Type 4 (formerly GSA: FF-S-325 Group II, Type 4, Class 1)

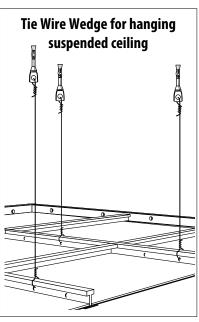
Made in USA

INSTALLATION STEPS

- **1.** Select a carbide drill bit with a diameter equal to the anchor diameter. Drill hole to any depth exceeding the desired embedment. See chart for minimum recommended embedment.
- **2.** Clean hole or continue drilling additional depth to accommodate drill fines.

- **3.** Assemble washer and nut, leaving top of stud exposed through nut. Drive anchor through material to be fastened until washer is flush to surface of material.
- **4.** Expand anchor by tightening nut 3-5 turns past the hand tight position, or to the specified torque requirement.
- **** ONLY FOR USE IN CONCRETE****

64


SELECTION CHARTS

Trubolt Carbon Steel with Zinc Plating

Typical Applications— Structural Columns, Machinery, Equipment, etc. Environment—Interior (non-corrosive) Level of Corrosion—Low

DADT

PART NUMBER	THREAD LENGTH In. (mm)	ANCHOR DIA. & DRILL BIT SIZE (THREADS) PER INCH	OVERALL LENGTH In. (mm)	MAX. THICKNESS OF MATERIAL TO BE FASTENED In. (mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CARTON Ibs.
WS-1416	3/4 (19.1)	1/4″ - 20	1-3/4 (44.5)	3/8 (9.5)	100/ 3.1	1000/ 32
WS-1422	1-1/4 (31.8)		2-1/4 (57.2)	7/8 (22.2)	100/ 3.6	1000/ 37
WS-1432	2-1/4 (57.2)		3-1/4 (82.6)	1-7/8 (47.6)	100/ 4.7	800/39
WS-3822	1-1/8 (28.6)	3/8″ - 16	2-1/4 (57.2)	3/8 (9.5)	50/ 4.1	500/41
WS-3826	1-5/8 (41.3)		2-3/4 (69.9)	7/8 (22.2)	50/ 4.7	400/39
WS-3830	1-3/4 (44.5)		3 (76.2)	1-1/8 (28.6)	50/ 5.0	400/41
WS-3836	2-1/2 (63.5)		3-3/4 (95.3)	1-7/8 (47.6)	50/ 5.9	300/36
WS-3850	3-3/4 (95.2)		5 (127.0)	3-1/8 (79.4)	50/ 7.4	250/38
WS-3870	3-7/8 (98.4)		7 (177.8)	5-1/8 (130.2)	50/10.4	250/53
WS-1226	1-1/4 (31.8)	1/2″ - 13	2-3/4 (69.9)	1/8 (3.2)	25/ 4.6	200/38
WS-1236	2-1/4 (57.2)		3-3/4 (95.3)	1 (25.4)	25/ 5.7	150/35
WS-1242	2-3/4 (69.9)		4-1/4 (108.0)	1-1/2 (38.1)	25/ 6.2	150/38
WS-1244	3 (76.2)		4-1/2 (114.3)	1-3/4 (44.5)	25/ 6.5	150/39
WS-1254	4 (101.6)		5-1/2 (139.7)	2-3/4 (69.9)	25/ 7.7	150/47
WS-1270	5-1/2 (139.7)		7 (177.8)	4-1/4 (108.0)	25/ 9.3	150/57
WS-5834	1-3/4 (44.5)	5/8" - 11	3-1/2 (88.9)	1/8 (3.2)	10/ 3.6	100/37
WS-5842	2-1/2 (63.5)		4-1/4 (108.0)	7/8 (22.2)	10/ 4.1	100/42
WS-5850	3-1/4 (82.6)		5 (127.0)	1-5/8 (41.3)	10/ 4.7	100/48
WS-5860	4-1/4 (107.9)		6 (152.4)	2-5/8 (66.7)	10/ 5.4	50/28
WS-5870	5-1/4 (133.4)		7 (177.8)	3-5/8 (92.1)	10/ 6.2	30/19
WS-5884	5-3/4 (146.0)		8-1/2 (215.9)	5-1/8 (130.2)	10/ 8.0	30/25
WS-58100	5-3/4 (146.0)		10 (254.0)	6-5/8 (168.3)	10/ 9.4	30/29
WS-3442	2-3/8 (60.3)	3/4″ - 10	4-1/4 (108.0)	1/4 (31.8)	10/ 6.8	60/42
WS-3446	2-7/8 (73.0)		4-3/4 (120.7)	3/4 (19.1)	10/ 7.4	60/45
WS-3454	3-5/8 (92.1)		5-1/2 (139.7)	1-1/2 (38.1)	10/ 8.1	50/41
WS-3462	4-3/8 (111.1)		6-1/4 (158.8)	2-1/4 (57.2)	10/ 9.1	30/28
WS-3470	5-1/8 (130.2)		7 (177.8)	3 (76.2)	10/ 9.7	30/ 30
WS-3484	5-3/4 (146.0)		8-1/2 (215.9)	4-1/2 (114.3)	10/12.3	30/ 38
WS-34100	5-3/4 (146.0)		10 (254.0)	6 (152.4)	10/14.0	30/43
WS-34120	1-3/4 (44.5)		12 (304.8)	8 (203.2)	10/ 16.6	30/51
WS-7860	2-1/2 (63.5)	7/8″ - 9	6 (152.4)	1-3/8 (34.9)	5/ 6.3	25/32
WS-7880	2-1/2 (63.5)		8 (203.2)	3-3/8 (85.7)	5/ 8.1	15/25
WS-78100	2-1/2 (63.5)		10 (254.0)	5-3/8 (136.5)	5/ 9.8	15/30
WS-10060	2-1/2 (63.5)	1″ - 8	6 (152.4)	1/2 (12.7)	5/ 8.3	25/43
WS-10090	2-1/2 (63.5)		9 (228.6)	3-1/2 (88.9)	5/ 11.6	15/36
WS-100120	2-1/2 (63.5)		12 (304.8)	6-1/2 (165.1)	5/ 15.0	15/46
TIE WIRE						
TW-1400	N/A	1/4″	2-1/8 (54.0)	9/32-hole (7.1)	100/ 3.6	1000/ 36
TW-1400 K	N/A		2-1/8 (54.0)	9/32-hole (7.1)	BULK	1500/73

Meets ASTM B633 SC1, Type III specifications for electroplating of 5um = .0002" thickness.

OVEDALL

MAY THICKNESS

OTV/WT

OTV/WT

This material is well suited for non-corrosive environments.

TUDEAD

SELECTION CHARTS

Trubolt Carbon Steel with Hot-Dipped Galvanizing

Meets ASTM A153 Class specifications for hot-dipped galvanizing > 45um = .002". It is highly recommended for damp, humid environments near coastal regions. Hot-dipped galvanized Trubolts have a coating thickness of zinc that is almost 10 times as thick as electroplating. This creates greater corrosion resistance at a minimal cost.

Typical Applications — Railings, Signage, Awnings, etc.	PART NUMBER	THREAD LENGTH In. (mm)	ANCHOR DIA. & DRILL BIT SIZE (THREADS) PER INCH	OVERALL LENGTH In. (mm)	MAX. THICKNESS OF MATERIAL TO BE FASTENED In. (mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CARTON Ibs.
Environment—Rural/	WS-1226G	1-1/4 (31.8)	1/2″ - 13	2-3/4 (69.9)	1/8 (3.2)	25/ 4.8	200/ 39
Suburban (exterior environ-	WS-1242G	2-3/4 (69.9)		4-1/4 (108.0)	1-1/2 (38.1)	25/ 6.7	150/ 41
ment—	WS-1254G	4 (101.6)		5-1/2 (139.7)	2-3/4 (69.9)	25/ 8.0	150/ 49
essentially unpolluted areas)	WS-1270G	5-1/2 (139.7)		7 (177.8)	4-1/4 (108.0)	25/ 9.7	150/ 59
Level of Corrosion—	WS-5834G	1-3/4 (44.5)	5/8″ - 11	3-1/2 (88.9)	1/8 (3.2)	10/ 3.7	100/ 38
Low to Medium	WS-5860G	4-1/4 (107.9)		6 (152.4)	2-5/8 (66.7)	10/ 5.6	50/ 29
	WS-3446G WS-3454G WS-3484G	2-7/8 (73.0) 3-5/8 (92.1) 5-3/4 (146.0)	3/4″ - 10	4-3/4 (120.7) 5-1/2 (139.7) 8-1/2 (215.9)	3/4 (19.1) 1-1/2 (38.1) 4-1/2 (114.3)	10/ 7.5 10/ 8.4 10/ 12.5	60/ 46 50/ 42 30/ 38

SELECTION CHARTS

Trubolt Type 304 **Stainless Steel**

Serves many applications well. It withstands rusting in architectural and food processing environments and resists organic chemicals, dye stuffs and many inorganic chemicals.

ns — Teating, etc. Tban	PART NUMBER	THREAD LENGTH In. (mm)	ANCHOR DIA. & DRILL BIT SIZE (THREADS) PER INCH	OVERALL LENGTH In. (mm)	MAX. THICKNESS OF MATERIAL TO BE FASTENED In. (mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CARTON Ibs.
—Medium	WW-1416 WW-1422 WW-1432	3/4 (19.1) 1-1/4 (31.8) 2-1/4 (57.2)	1/4″ - 20	1-3/4 (44.5) 2-1/4 (57.2) 3-1/4 (82.6)	3/8 (9.5) 7/8 (22.2) 1-7/8 (47.6)	100/ 3.2 100/ 3.7 100/ 4.8	1000/ 32 1000/ 37 800/ 39
Mcdum	WW-3822 WW-3826 WW-3830 WW-3836 WW-3850	1-1/8 (28.6) 1-5/8 (41.3) 1-3/4 (44.5) 2-1/2 (63.5) 3-3/4 (95.3)	3/8″ - 16	2-1/4 (57.2) 2-3/4 (69.9) 3 (76.2) 3-3/4 (95.3) 5 (127.0)	3/8 (9.5) 7/8 (22.2) 1-1/8 (28.6) 1-7/8 (47.6) 3-1/8 (79.4)	50/ 4.1 50/ 4.8 50/ 5.1 50/ 6.0 50/ 7.5	500/ 41 400/ 39 400/ 42 300/ 37 250/ 39
	WW-1226 WW-1236 WW-1242 WW-1254 WW-1270	1-1/4 (31.8) 2-1/4 (57.2) 2-3/4 (69.9) 3 (76.2) 3-1/2 (88.9)	1/2″ - 13	2-3/4 (69.9) 3-3/4 (95.3) 4-1/4 (108.0) 5-1/2 (139.7) 7 (177.8)	1/8 (3.2) 1 (25.4) 1-1/2 (38.1) 2-3/4 (69.9) 4-1/4 (108.0)	25/ 4.7 25/ 5.8 25/ 6.3 25/ 7.7 25/ 9.4	200/ 38 150/ 36 150/ 39 150/ 47 150/ 57
	WW-5834 WW-5842 WW-5850 WW-5860 WW-5870 WW-5884	1-3/4 (44.5) 2-1/2 (63.5) 3-1/4 (82.6) 4-1/4 (107.9) 3-1/2 (88.9) 3-1/2 (88.9)	5/8″ - 11	3-1/2 (88.9) 4-1/4 (108.0) 5 (127.0) 6 (152.4) 7 (177.8) 8-1/2 (215.9)	1/8 (3.2) 7/8 (22.2) 1-5/8 (41.3) 2-5/8 (66.7) 3-5/8 (92.1) 5-1/8 (130.2)	10/ 3.6 10/ 4.2 10/ 4.8 10/ 5.5 10/ 6.2 10/ 8.0	100/ 37 100/ 43 100/ 49 50/ 28 30/ 20 30/ 25
	WW-3446 WW-3454 WW-3470 WW-3484 WW-34100	2-7/8 (73.0) 3-5/8 (92.1) 3-1/2 (88.9) 3-1/2 (88.9) 1-3/4 (44.5)	3/4″ - 10	4-3/4 (120.7) 5-1/2 (139.7) 7 (177.8) 8-1/2 (215.9) 10 (254.0)	3/4 (19.1) 1-1/2 (38.1) 3 (76.2) 4-1/2 (114.3) 6 (152.4)	10/ 6.7 10/ 7.5 10/ 9.2 10/ 12.3 10/ 13.5	60/ 41 50/ 38 30/ 28 30/ 38 30/ 42
	WW-10060 WW-10090	2-1/2 (63.5) 2-1/2 (63.5)	1″ - 8	6 (152.4) 9 (228.6)	1/2 (12.7) 3-1/2 (88.9)	5/ 8.3 5/ 11.4	25/43 15/35

* For continuous extreme low temperature applications, use stainless steel.

SELECTION CHARTS

		1	1
	in su	100	11
AV.		4	
MA			

Trubolt Type 316 **Stainless Steel**

Typical Applications-Tunnels, Dams, Tiles, Lighting Fixtures, etc. Environment-Marine (heavy atmosph pollution) Level of Corrosion—High

Contains more nickel and chromium than Type 304, and 2%-3% molybdenum, which gives it better corrosion resistance. It is especially more effective in chloride environments that tend to cause pitting.

Typical Applications — Pumps, Diffusers, Gates, Weir Plates, etc.	PART NUMBER	THREAD LENGTH In. (mm)	ANCHOR DIA. & DRILL BIT SIZE (THREADS) PER INCH	OVERALL LENGTH In. (mm)	MAX. THICKNESS OF MATERIAL TO BE FASTENED In. (mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CARTON Ibs.
Environment—Industrial (moderate to heavy	SWW-1422 SWW-1432	1-1/4 (31.8) 2-1/4 (57.2)	1/4″ - 20	2-1/4 (57.2) 3-1/4 (82.6)	7/8 (22.2) 1-1/8 (28.6)	100/ 3.7 100/ 4.8	1000/ 37 1000/ 39
atmospheric pollution) Level of Corrosion — Medium to High	SWW-3822 SWW-3826 SWW-3830 SWW-3836 SWW-3850	1-1/8 (28.6) 1-5/8 (41.3) 1-3/4 (44.5) 2-1/2 (63.5) 3-3/4 (95.3)	3/8″ - 16	2-1/4 (57.2) 2-3/4 (69.9) 3 (76.2) 3-3/4 (95.5) 5 (127.0)	3/8 (9.5) 7/8 (22.2) 1-1/8 (28.6) 1-7/8 (47.6) 3-1/8 (79.4)	50/ 4.1 50/ 4.8 50/ 5.2 50/ 6.0 50/ 7.5	500/ 41 400/ 39 400/ 42 300/ 37 250/ 39
Typical Applications— Tunnels, Dams, Tiles, Lighting Fixtures, etc.	SWW-1226 SWW-1236 SWW-1242 SWW-1254	1-1/4 (31.8) 2-1/4 (57.2) 2-3/4 (69.9) 3 (76.2)	1/2″ - 13	2-3/4 (69.9) 3-3/4 (95.3) 4-1/4 (108.0) 5-1/2 (139.7)	1/8 (3.2) 1 (25.4) 1-1/2 (38.1) 2-3/4 (69.9)	25/ 4.7 25/ 5.8 25/ 6.5 25/ 7.8	200/ 39 150/ 36 150/ 40 150/ 48
Environment— Marine (heavy atmospheric pollution) Level of Corrosion—High	SWW-5842 SWW-5850 SWW-5870	2-1/2 (63.5) 3-1/4 (82.6) 3-1/2 (88.9)	5/8" - 11	4-1/4 (108.0) 5 (127.0) 7 (177.8)	7/8 (22.2) 1-5/8 (41.3) 3-5/8 (92.1)	10/ 4.2 10/ 4.8 10/ 6.7	100/ 43 100/ 49 30/ 21

* For continuous extreme low temperature applications, use stainless steel.

PERFORMANCE TABLE

Trubolt

Wedge Anchors Ultimate Tension and Shear Values (Lbs/kN) in Concrete*

Wedge Anchors			Ultillat					Cui			U J I	, .			
ANCHOR	INSTALLATION	EMBEDMENT	ANCHOR	fo	= 2000	PSI (13.8 N	IPa)	fc	= 4000 PS	5I (27.6 MP	a)	fc	= 6000 P	SI (41.4 M	IPa)
DIA. In. (mm)	TORQUE Ft. Lbs. (Nm)	DEPTH In. (mm)	ТҮРЕ	TENS Lbs.			EAR (kN)		SION (kN)		EAR (kN)	TEN: Lbs.			IEAR 5. (kN)
1/4 (6.4)	4 (5.4)	1-1/8 (28.6) 1-15/16 (49.2) 2-1/8 (54.0)		1,180 2,100 2,260	(5.2) (9.3) (10.1)	1,400 1,680 1,680	(6.2) (7.5) (7.5)	1,780 3,300 3,300	(7.9) (14.7) (14.7)	1,400 1,680 1,680	(6.2) (7.5) (7.5)	1,900 3,300 3,300	(8.5) (14.7) (14.7)	1,400 1,680 1,680	(6.2) (7.5) (7.5)
3/8 (9.5)	25 (33.9)	1-1/2 (38.1) 3 (76.2) 4 (101.6)		1,620 3,480 4,800	(7.5) (15.5) (21.4)	2,320 4,000 4,000	(10.3) (17.8) (17.8)	2,240 5,940 5,940	(10.0) (26.4) (26.4)	2,620 4,140 4,140	(11.7) (18.4) (18.4)	2,840 6,120 6,120	(12.6) (27.2) (27.2)	3,160 4,500 4,500	(14.1) (20.0) (20.0)
1/2 (12.7)	55 (74.6)	2-1/4 (57.2) 4-1/8 (104.8) 6 (152.4)	WS-Carbon or WS-G	3,455 4,660 5,340	(20.7) (20.7) (23.8)	4,760 7,240 7,240	(21.2) (32.2) (32.2)	4,920 9,640 9,640	(22.7) (42.9) (42.9)	4,760 7,240 7,240	(21.2) (32.2) (32.2)	6,025 10,820 10,820	(31.3) (48.1) (48.1)	7,040 8,160 8,160	(31.3) (36.3) (36.3)
5/8 (15.9)	90 (122.0)	2-3/4 (69.9) 5-1/8 (130.2) 7-1/2 (190.5)	Hot-Dipped Galvanized or WW-304 S.S.	5,185 6,580 7,060	(29.3) (29.3) (31.4)	7,120 9,600 9,600	(31.7) (42.7) (42.7)	7,180 14,920 15,020	(31.9) (66.4) (66.8)	7,120 11,900 11,900	(31.7) (52.9) (52.9)	9,225 16,380 16,380	(43.2) (72.9) (72.9)	9,616 12,520 12,520	(42.8 (55.7) (55.7)
3/4 (19.1)	110 (149.2)	3-1/4 (82.6) 6-5/8 (168.3) 10 (254.0)	or SWW-316 S.S.	6,765 10,980 10,980	(31.7) (48.8) (48.8)	10,120 20,320 20,320	(45.0) (90.4) (90.4)	10,840 17,700 17,880	(48.2) (78.7) (79.5)	13,720 23,740 23,740	(61.0) (105.6) (105.6)	13,300 20,260 23,580	(59.2) (90.1) (104.9)	15,980 23,740 23,740	(71.1) (105.6) (105.6)
7/8 (22.2)	250 (339.0)	3-3/4 (95.3) 6-1/4 (158.8) 8 (203.2)		9,290 14,660 14,660	(42.3) (65.2) (65.2)	13,160 20,880 20,880	(58.5) (92.9) (92.9)	14,740 20,940 20,940	(65.6) (93.1) (93.1)	16,580 28,800 28,800	(73.8) (128.1) (128.1)	17,420 24,360 24,360	(77.5) (108.4) (108.4)	19,160 28,800 28,800	(85.2) (128.1) (128.1)
1 (25.4)	300 (406.7)	4-1/2 (114.3) 7-3/8 (187.3) 9-1/2 (241.3)		11,770 14,600 18,700	(62.0) (64.9) (83.2)	16,080 28,680 28,680	(71.5) (127.6) (127.6)	19,245 23,980 26,540	(89.8) (106.7) (118.1)	22,820 37,940 37,940	(101.5) (168.8) (168.8)	21,180 33,260 33,260	(94.2) (148.0) (148.0)	24,480 38,080 38,080	(108.9) (169.4) (169.4)

* Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

* For Tie-Wire Wedge Anchor, TW-1400, use tension data from 1/4" diameter with 1-1/8" embedment.

* For continuous extreme low temperature applications, use stainless steel.

PERFORMANCE TABLE

TruboltUltimate Tension and Shear Values (Lbs/kN) inWedge AnchorsLightweight Concrete*

ANCHOR DIA. In. (mm)	INSTALLATION TORQUE Ft. Lbs. (Nm)	EMBEDMENT DEPTH In. (mm)	ANCHOR TYPE		HT CONCRETE SI (20.7 MPa)	LOWER FLUTE OF LIGHTWEIGHT f'c = 3000 PS	CONCRETE FILL
				TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)
3/8 (9.5)	25 (33.9)	1-1/2 (38.1) 3 (76.2)	WS-Carbon or	1,175 (5.2) 2,825 (12.6)	1,480 (6.6) 2,440 (10.9)	1,900 (8.5) 2,840 (12.6)	3,160 (14.1) 4,000 (17.8)
1/2 (12.7)	55 (74.6)	2-1/4 (57.2) 3 (76.2) 4 (101.6)	WS-G Hot-Dipped Galvanized	2,925 (13.0) 3,470 (15.4) 4,290 (19.1)	2,855 (12.7) 3,450 (15.3) 3,450 (15.3)	3,400 (15.1) 4,480 (19.9) 4,800 (21.4)	5,380 (23.9) 6,620 (29.4) 6,440 (28.6)
5/8 (15.9)	90 (122.0)	3 (76.2) 5 (127.0)	or WW-304 S.S. or	4,375 (19.5) 6,350 (28.2)	4,360 (19.4) 6,335 (28.2)	4,720 (21.0) 6,580 (29.3)	5,500 (24.5) 9,140 (40.7)
3/4 (19.1)	110 (149.2)	3-1/4 (82.6) 5-1/4 (133.4)	SWW-316 S.S.	5,390 (24.0) 7,295 (32.5)	7,150 (31.8) 10,750 (47.8)	5,840 (26.0) 7,040 (31.3)	8,880 (39.5) N/A

* Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

PERFORMANCE TABLE

Trubolt Recommended Edge and Spacing Distance Requirements for Shear Loads*

		vve	age I	Ancnors	101 5	leur	Louus							
D	CHOR DIA. (mm)	EMBED DEP In. (1	тн	ANCHOR TYPE	EDGE DISTANCE MIN. EDGE MIN. EDGE DISTANCE REQUIRED TO DISTANCE AT WHICH AT WHICH THE OBTAIN MAX. THE LOAD FACTOR LOAD FACTOR WORKING LOAD APPLIED = .60 APPLIED = .20 In. (mm) In. (mm) In. (mm)		REQUIR OBTAIN WORKIN	SPACING REQUIRED TO OBTAIN MAX. WORKING LOAD In. (mm)		OWABLE ETWEEN In. (mm) ACTOR) = .40				
1/4	(6.4)	1-1/8 1-15/16	(28.6) (49.2)		2 1-15/16	(50.8) (49.2)	1-5/16 1	(33.3) (25.4)	N/A N/A		3-15/16 3-7/8	(100.0) (98.4)	2 1-15/16	(50.8) (49.2)
3/8	(9.5)	1-1/2 3	(38.1) (76.2)	WS-Carbon	2-5/8 3-3/4	(66.7) (95.3)	1-3/4 3	(44.5) (76.2)	N/A 1-1/2	(38.1)	5-1/4 6	(133.4) (152.4)	2-5/8 3	(66.7) (76.2)
1/2	(12.7)	2-1/4 4-1/8	(57.2) (104.8)	or WS-G	3-15/16 5-3/16	(100.0) (131.8)	2-9/16 3-1/8	(65.1) (79.4)	N/A 1-9/16	(39.7)	7-7/8 6-3/16	(200.0) (157.2)	3-15/16 3-1/8	(100.0) (79.4)
5/8	(15.9)	2-3/4 5-1/8	(69.9) (130.2)	Hot-Dipped Galvanized	4-13/16 6-7/16	(122.2) (163.5)	3-1/8 3-7/8	(79.4) (98.4)	N/A 1-15/16	(49.2)	9-5/8 7-11/16	(244.5) (195.3)	4-13/16 3-7/8	(122.2) (98.4)
3/4	(19.1)	3-1/4 6-5/8	(82.6) (168.3)	or WW-304 S.S.	5-11/16 6-5/16	(144.5) (160.3)	3-3/4 5	(95.3) (127.0)	N/A 2-1/2	(63.5)	11-3/8 9-15/16	(288.9) (252.4)	5-11/16 5	(144.5) (127.0)
7/8	(22.2)	3-3/4 6-1/4	(95.3) (158.8)	or SWW-316 S.S.	6-9/16 8-1/2	(166.7) (215.9)	4-5/16 6-1/4	(109.5) (158.8)	N/A 3-1/8	(79.4)	13-1/8 12-1/2	(333.4) (317.5)	6-9/16 6-1/4	(166.7) (158.8)
1	(25.4)	4-1/4 7-3/8	(108.0) (187.3)]	7-7/8 10-1/16	(200.0) (255.6)	5-1/8 7-3/8	(130.2) (187.3)	N/A 3-11/16	(93.7)	15-3/4 14-3/4	(400.1) (374.7)	7-7/8 7-3/8	(200.0) (187.3)

* Spacing and edge distances shall be divided by 0.75 when anchors are placed in structural lightweight concrete. Linear interpolation may be used for intermediate spacing and edge distances.

PERFORMANCE TABLE

Trubolt Recommended Edge and Spacing Distance Requirements Wedge Anchors for Tension Loads*

ANCHOR DIA. In. (mm)	EMBEDMENT DEPTH In. (mm)	ANCHOR TYPE	EDGE DISTANCE REQUIRED TO OBTAIN MAX. WORKING LOAD In. (mm)	MIN. ALLOWABLE EDGE DISTANCE AT WHICH THE LOAD FACTOR APPLIED = .65 In. (mm)	SPACING REQUIRED TO OBTAIN MAX. WORKING LOAD In. (mm)	MIN. ALLOWABLE SPACING AT WHICH THE LOAD FACTOR APPLIED = .70 In. (mm)	
1/4 (6.4)	1-1/8 (28.6) 1-15/16 (49.2) 2-1/8 (54.0)		2 (50.8) 1-15/16 (49.2) 1-5/8 (41.3)	1 (25.4) 1 (25.4) 13/16 (20.6)	3-15/16 (100.0) 3-7/8 (98.4) 3-3/16 (81.0)	2 (50.8) 1-15/16 (49.2) 1-5/8 (41.3)	
3/8 (9.5)	1-1/2 (38.1) 3 (76.2) 4 (101.6)		2-5/8 (66.7) 3 (76.2) 3 (76.2)	1-5/16 (33.3) 1-1/2 (38.1) 1-1/2 (38.1)	5-1/4 (133.4) 6 (152.4) 6 (152.4)	2-5/8 (66.7) 3 (76.2) 3 (76.2)	
1/2 (12.7)	2-1/4 (57.2) 4-1/8 (104.8) 6 (152.4)	WS-Carbon or WS-G	3-15/16 (100.0) 3-1/8 (79.4) 4-1/2 (114.3)	2 (50.8) 1-9/16 (39.7) 2-1/4 (57.2)	7-7/8 (200.0) 6-3/16 (157.2) 9 (228.6)	3-15/16 (100.0) 3-1/8 (79.4) 4-1/2 (114.3)	
5/8 (15.9)	2-3/4 (69.9) 5-1/8 (130.2) 7-1/2 (190.5)	Hot-Dipped Galvanized or	4-13/16 (122.2) 3-7/8 (98.4) 5-5/8 (142.9)	2-7/16 (61.9) 1-15/16 (49.2) 2-13/16 (71.4)	9-5/8 (244.5) 7-1/16 (195.3) 11-1/4 (285.8)	4-13/16 (122.2) 3-7/8 (98.4) 5-5/8 (142.9)	
3/4 (19.1)	3-1/4 (82.6) 6-5/8 (168.3) 10 (254.0)	WW-304 S.S. or SWW-316 S.S.	5-11/16 (144.5) 5 (127.0) 7-1/2 (190.5)	2-7/8 (73.0) 2-1/2 (63.5) 3-3/4 (95.3)	11-3/8 (288.9) 9-15/16 (252.4) 15 (381.0)	5-11/16 (144.5) 5 (127.0) 7-1/2 (190.5)	
7/8 (22.2)	3-3/4 (95.3) 6-1/4 (158.8) 8 (203.2)		6-9/16 (166.7) 6-1/4 (158.8) 6 (152.4)	3-5/16 (84.1) 3-1/8 (79.4) 3 (76.2)	13-1/8 (333.4) 12-1/2 (317.5) 12 (304.8)	6-9/16 (166.7) 6-1/4 (158.8) 6 (152.4)	
1 (25.4)	4-1/2 (114.3) 7-3/8 (187.3) 9-1/2 (241.3)		7-7/8 (200.0) 7-3/8 (187.3) 7-1/8 (181.0)	3-15/16 (100.0) 3-11/16 (93.7) 3-9/16 (90.5)	15-3/4 (400.1) 14-3/4 (374.7) 14-1/4 (362.0)	7-7/8 (200.0) 7-3/8 (187.3) 7-1/8 (181.0)	

* Spacing and edge distances shall be divided by 0.75 when anchors are placed in structural lightweight concrete. Linear interpolation may be used for intermediate spacing and edge distances.

Combined Tension and Shear Loading—for Trubolt Anchors

Allowable loads for anchors subjected to combined shear and tension forces are determined by the following equation:

 $(Ps/Pt)^{5/3} + (Vs/Vt)^{5/3} \le 1$

Ps = Applied tension load Vs = Applied shear load Pt = Allowable tension load Vt = Allowable shear load

Trubolt®+ Seismic Wedge Anchors

APPROVALS/LISTINGS

ICC Evaluation Service, Inc. # ESR-2427 -Category 1 performance rating

-2015 IBC Compliant

-Meets ACI 318 ductility requirements

-Tested in accordance with ACI 355.2 and ICC-ES AC193

-Listed for use in seismic zones A, B, C, D, E, & F

-3/8", 1/2", 5/8" and 3/4" diameter anchors listed in ESR-2427

City of Los Angeles - #RR25867 Florida Building Code

LENGTH INDICATION CODE*

CODE	LENGTH OF ANCHOR	CODE	LENGTH OF ANCHOR
Α	1-1/2 < 2 (38.1 < 50.8)	K	6-1/2 < 7 (165.1 < 177.8)
В	2 < 2-1/2 (50.8 < 63.5)	L	7 < 7-1/2 (177.8 < 190.5)
C	2-1/2 < 3 (63.5 < 76.2)	М	7-1/2 < 8 (190.5 < 203.2)
D	3 < 3-1/2 (76.2 < 88.9)	Ν	8 < 8-1/2 (203.2 < 215.9)
E	3-1/2 < 4 (88.9 < 101.6)	0	8-1/2 < 9 (215.9 < 228.6)
F	4 < 4-1/2 (101.6 < 114.3)	Р	9 < 9-1/2 (228.6 < 241.3)
G	4-1/2 < 5 (114.3 < 127.0)	Q	9-1/2 < 10 (241.3 < 254.0)
Н	5 < 5-1/2 (127.0 < 139.7)	R	10 < 11 (254.0 < 279.4)
Ι	5-1/2 < 6 (139.7 < 152.4)	S	11 < 12 (279.4 < 304.8)
J	6 < 6-1/2 (152.4 < 165.1)	T	12 < 13 (304.8 < 330.2)

*Located on top of anchor for easy inspection.

Tw Red Head®

Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

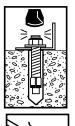
DESCRIPTION/SUGGESTED SPECIFICATIONS Seismic Wedge Type Anchors—

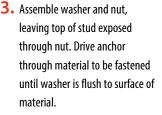
Trubolt+ Wedge anchors consist of a high-strength threaded stud body, expansion clip, nut and washer. Anchor bodies are made of plated carbon steel. The expansion clip consists of a split cylindrical ring with undercutting grooves.

The exposed end of the anchor is stamped to identify anchor length. Stampings should be preserved during installation for any subsequent embedment verification.

Use carbide tipped hammer drill bits made in accordance with ANSI B212.15-1994 to install anchors.

Anchors are tested to ACI 355.2 and ICC-ES AC193. Anchors are listed by the following agencies as required by the local building code: ICC-ES, and City of Los Angeles.


See Appendix C (pages 108-109) for performance values in accordance with 2015 IBC.


INSTALLATION STEPS

 Select a carbide drill bit with a diameter equal to the anchor diameter. Drill hole to any depth exceeding the desired embedment. See chart for minimum recommended embedment.

 Clean hole or continue drilling additional depth to accommodate drill fines

 Expand anchor by tightening nut 3-5 turns past the hand tight position, or to the specified torque requirement.

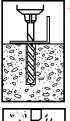
SELECTION CHART

	Tru Seismic	bolt [®] + M Wedge Anchors	Meets ASTM B633 SC1, Type III specifications for electroplating of 5um = .0002" thickness. This coating is well suited for non-				
Carbon S	Steel with Zi	nc Plating 🤇	corrosive environments.				
PART	THREAD	ANCHOR DIA.	OVERALL	MAX. THICKNESS	QTY/WT	QTY/WT	

	PARI NUMBER	IHREAD LENGTH In. (mm)	ANCHOR DIA. & DRILL BIT SIZE (THREADS) PER INCH	OVERALL LENGTH In. (mm)	MAX. THICKNESS OF MATERIAL TO BE FASTENED In. (mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CARTON Ibs.
	CWS-3830	1-5/8 (41.3)	3/8″ - 16	3 (76.2)	5/8 (15.9)	50/ 5.3	400/42
	CWS-3836	2-3/8 (60.3)	3/8″ - 16	3-3/4 (95.3)	1-3/8 (34.9)	50/ 5.9	300/35
	CWS-3850	3-5/8 (92.1)	3/8″ - 16	5 (127.0)	2-5/8 (66.7)	50/ 7.3	250/37
	CWS-1236	2-1/8 (54.0)	1/2″ - 13	3-3/4 (95.3)	3/4 (19.1)	25/ 5.7	150/34
	CWS-1244	2-7/8 (73.0)	1/2″ - 13	4-1/2 (114.3)	1-1/2 (38.1)	25/ 7.0	150/40
1	CWS-1254	3-7/8 (98.4)	1/2″ - 13	5-1/2 (139.7)	2-1/2 (63.5)	25/ 8.0	150/49
4	CWS-1270	5-3/8 (136.5)	1/2″ - 13	7 (177.8)	4 (101.6)	25/ 9.2	150/55
Ę	CWS-5850	3-3/16 (81.0)	5/8″ - 11	5 (127.0)	1-1/8 (28.6)	10/ 4.7	100/48
	CWS-5860	4-3/16 (106.4)	5/8″ - 11	6 (152.4)	2-1/8 (54.0)	10/ 5.4	50/28
	CWS-5870	5-3/16 (131.8)	5/8″ - 11	7 (177.8)	3-1/8 (79.4)	10/ 6.2	30/19
	CWS-5884	5-3/4 (146.0)	5/8″ - 11	8-1/2 (215.9)	4-5/8 (117.5)	10/ 8.0	30/25
	CWS-3454	3-5/8 (92.1)	3/4" - 10	5-1/2 (139.7)	1-1/2 (38.1)	50/ 7.6	30/38
	CWS-3462	4-3/8 (111.1)	3/4" - 10	6-1/4 (158.8)	2-1/4 (57.2)	10/ 8.5	30/26
	CWS-3470	5-1/8 (130.2)	3/4" - 10	7 (177.8)	3 (76.2)	10/ 9.0	30/27
	CWS-3484	5-3/4 (146.0)	3/4" - 10	8-1/2 (215.9)	4-1/2 (114.3)	10/10.5	30/32
	CWS-34100	5-3/4 (146.0)	3/4" - 10	10 (254.0)	6 (152.4)	10/11.9	30/36

DESCRIPTION/SUGGESTED SPECIFICATIONS Seismic Wedge Type Anchors—

The Trubolt+ Wedge Anchor consists of a high-strength threaded anchor body, expansion clip, hex nut and washer. The anchor body is cold-formed from AISI Type 316 stainless steel materials. The expansion clip is fabricated from Type 316 stainless steel materials. The expansion clip consists of a split cylindrical ring with under cutting grooves at the bottom end.


The exposed end of the anchor is stamped to identify anchor length. Stampings should be preserved during installation for any subsequent embedment verification.

Use carbide tipped hammer drill bits made in accordance with ANSI B212.15-1994 to install anchors.

Anchors are tested to ACI 355.2 and ICC-ES AC193. Anchors are listed by the following agencies as required by the local building code: ICC-ES, and City of Los Angeles.

See Appendix C (page 110) for performance values in accordance with 2015 IBC.

INSTALLATION STEPS

Select a carbide drill bit with a diameter equal to the anchor diameter. Drill hole to any depth exceeding the desired embedment. See chart for minimum recommended embedment.

Clean hole or continue

drilling additional depth to

accommodate drill fines.

- Assemble washer and nut, leaving top of stud exposed through nut. Drive anchor through material to be fastened until washer is flush to surface of material.
- 0.000 0.000 0.0000 0.00000 0.0000 0.00000 0.0000 0.0000000 0.0000 0.00000 0.00000 0
- Expand anchor by tightening nut 3-5 turns past the hand tight position, or to the specified torque requirement.

APPROVALS/LISTINGS

- ICC Evaluation Service, Inc. #ESR-2427
 - Category 1 performance rating
 - -2015 IBC Compliant
 - Meets ACI 318 ductility requirements
 - Tested in accordance with ACI 355.2 and ICC-ES AC193
 - Listed for use in Seismic zones A, B, C, D, E & F

- 1/2" and 5/8" diameter anchors listed in ESR-2427 City of Los Angeles - #RR25867

LENGTH INDICATION CODE*

😓 RED HEAD

CODE	LENGTH OF ANCHOR	CODE	LENGTH OF ANCHOR
Α	1-1/2 < 2 (38.1 < 50.8)	K	6-1/2 < 7 (165.1 < 177.8)
В	2 < 2-1/2 (50.8 < 63.5)	L	7 < 7-1/2 (177.8 < 190.5)
C	2-1/2 < 3 (63.5 < 76.2)	М	7-1/2 < 8 (190.5 < 203.2)
D	3 < 3-1/2 (76.2 < 88.9)	N	8 < 8-1/2 (203.2 < 215.9)
E	3-1/2 < 4 (88.9 < 101.6)	0	8-1/2 < 9 (215.9 < 228.6)
F	4 < 4-1/2 (101.6 < 114.3)	Р	9 < 9-1/2 (228.6 < 241.3)
G	4-1/2 < 5 (114.3 < 127.0)	Q	9-1/2 < 10 (241.3 < 254.0)
Н	5 < 5-1/2 (127.0 < 139.7)	R	10 < 11 (254.0 < 279.4)
Ι	5-1/2 < 6 (139.7 < 152.4)	S	11 < 12 (279.4 < 304.8)
J	6 < 6-1/2 (152.4 < 165.1)	T	12 < 13 (304.8 < 330.2)

*Located on top of anchor for easy inspection.

SELECTION CHART

	Trubolt Seismic Wedge Anchors 316 Stainless Steel Meets ASTM B633 SC1, Type III specifications for electroplating of 5um = .0002" thickness. This coating is well suited for non- corrosive environments.								
	PART NUMBER	THREAD LENGTH In (mm)	ANCHOR DIA. & DRILL BIT SIZE (THREADS) PER INCH	OVERALL LENGTH In. (mm)	MAX. THICKNESS OF MATERIAL TO BE FASTENED In. (mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CARTON Ibs.		
10	CSWW-1236	2-1/8 (54.0)	1/2"-13	3-3/4 (95.3)	3/4 (19.1)	25/5.8	150/35		
ļ	CSWW-1244	2-7/8 (73.0)	1/2"-13	4-1/2 (114.3)	1-1/2 (38.1)	25/6.6	150/40		
	CSWW-1254	3-7/8 (98.4)	1/2"-13	5-1/2 (139.7)	2-1/2 (63.5)	25/7.9	150/48		
	CSWW-1270	5-3/8 (136.5)	1/2"-13	7 (177.8)	4 (101.6)	25/9.5	150/57		
	CSWW-5842	2-7/16 (61.9)	5/8"-11	4-1/2 (114.3)	3/8 (9.5)	10/4.2	100/42		
	CSWW-5850	3-3/16 (81.0)	5/8"-11	5 (127.0)	1-1/8 (28.6)	10/4.8	100/48		

Large Diameter Tapcon (LDT) Anchors

Finished head, Removable Anchor

(3/8" & 1/2") (5/8" & 3/4") Sawtooth^{**} 3/8" and 1/2" are available with *Envire* coating

> Uses standard drill bits no special drill bits to purchase or lose!

DESCRIPTION/SUGGESTED SPECIFICATIONS

Self-threading Anchors —

SPECIFIED FOR ANCHORAGE INTO CONCRETE

LDT Self-threading Anchor The LDT anchor is a high performance anchor that cuts its own threads into concrete.

Anchor bodies are made of hardened carbon steel and zinc plated, Grade 5.

The anchors shall have a finished hex washer head with anti-rotation serrations to prevent anchor back-out. The head of the anchor is stamped with a length identification code for easy inspection.

The hole shall be drilled with carbide tipped hammer drill bits made in accordance to ANSI B212.15-1994.

ADVANTAGES

SAVE TIME

EASILY INSTALLED

- Installs in less than half the time of wedge anchors or adhesive anchors
- Simply drill a pilot hole and drive the LDT anchor by hand or impact

EASILY REMOVED

No torching or grinding required to remove anchors

SAVE MONEY

LOWER DRILL BIT COSTS

- Use standard ANSI bits instead of proprietary bits
- Single piece design, no nut and washer to assemble

USE STANDARD ANSI BITS

- No special proprietary bits to purchase or lose
- Reduce chances for anchor failure due to incorrect bit usage

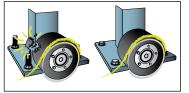
Sawtooth Threads[™] diameters available on 5/8″ and 3/4″

IMPROVEDPERFORMANCEINLARGE DIAMETER HOLES

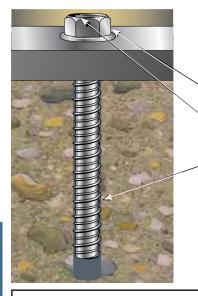
- Superior performance to wedge anchor
- Higher loads in shallow embedments
- Closer edge/spacing distance than mechanical anchors
- More threads for better thread engagement and higher pullout resistance
- Durable induction-hardened tip

EASY INSTALLATION

- Easy 2-step installation, simply drill a pilot hole and drive
- Installs in less than half the time of a wedge anchor
- Efficient thread cutting
- Use standard drill bit sizes
- Single piece design—no nut and washer assembly
- Easily removed


LDT Anchors

APPLICATIONS


Racking, shelving and conveyors are just a few high volume applications ideal for Large Diameter Tapcon (LDT[™]). The ease and speed of installation of the LDT can reduce installation time to less than half the time of typical systems used today.

For installation speed, high performance and easy removability, LDT is the anchor of choice.

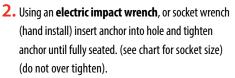
The LDT's finished head and lack of exposed threads virtually eliminates tire damage on fork lift trucks.

FEATURES

Easy Installation Installs into concrete by hand or impact wrench Anti-rotation Serrated Washer

 Prevents anchor back-out **Extra Large Hex Washer Head** — With increased bearing surface

Length Identification Head Stamp - For embedment inspection after installation


Hi-Lo Threads Cuts its own threads into concrete for greater pull-out resistance

INSTALLATION STEPS

Installation Steps for Concrete, Lightweight Concrete and Metal Deck

- Using the proper size carbide bit (see chart) drill "a pilot hole at least 1" deeper than anchor embedment. ""

Installation Steps for Hollow or Grout-Filled CMU

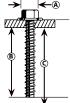
(3/8" and 1/2" diameter)

1. Using a 5/16" (for 3/8" LDT) or 7/16" (for 1/2" LDT) carbide tipped bit, drill a pilot hole at least 1" deeper than anchor embedment. "

2. Using a socket wrench insert anchor into hole and hand tighten anchor until fully seated. (9/16" socket for 3/8" and 3/4" socket for 1/2") (do not over tighten).

LDT's can be installed by hand or with an impact wrench

Installation by hand—is easy, simply using a socket wrench



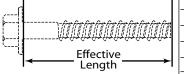
Installation by impact wrench—is recommended for faster installations or for high volume projects. Installation with impact wrench—is *not* recommended

LDT 3/8" and 1/2" are available with *Envire* coating 1,000 hours salt spray ASTM B117. Approved for use in ACQ and MCQ lumber* *Excessive content of copper in the ACQ and MCQ lumber may affect the anchor finish.

Selection Chart

								. —	
	ANSI	A .	Washer	B	©				
LDT Size	Standard	Anchor Head	Diameter	Minimum	Hole		USE IN		
	Drill Bit	(Socket Size)		Embedment	Depth		CMU		
	Diameter	Diameter				Concrete	Hollow	Grout-filled	
LDT 3/8"	5/16″	9/16″	13/16″	1-1/2″	2-1/2″	YES	YES	YES	
LDT 1/2"	7/16″	3/4″	1″	2-1/2″	3-1/2″	YES	NO	YES	1
LDT 5/8"	1/2″	13/16″	1-3/16″	2-3/4″	3-3/4″	YES	NO	YES	
LDT 3/4"	5/8″	15/16"	1-5/16″	3-1/4″	4-1/4″	YES	NO	YES	IL

See page 75 for effective lengths and length indication code.


SELECTION CHART

LDT Carbon and Stainless Steel

Carbon Steel with Zinc Plating: Meets ASTM B695 and B633 specifications for zinc plating of 5um = .0002" thickness. This coating is well suited for non-corrosive interior environments.

Carbon Steel with EnvireX Coating: Provides additional corrosion protection for outdoor applications.

	- Sector
-	10-
	-

PART NUMBER CARBON STEEL ZINC PLATED	PART NUMBER CARBON STEEL Envire COATING	PART NUMBER FOR 410 STAINLESS STEEL	0	CHOR DIA. (mm)	D	L BIT IA. mm)	LEN In. (CTIVE GTH mm) iil on left)	OF MA TO BE F	IICKNESS TERIAL ASTENED (mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CARTON Ibs.
LDT-3816	——	SLDT-3816	3/8	(9.5)	5/16	(7.9)	1-3/4	(44.5)	1/4	(6.4)	50/ 3.0	400/ 24.0
LDT-3824		SLDT-3824	3/8	(9.5)	5/16	(7.9)	2-1/2	(63.5)	1	(25.4)	50/ 4.5	400/ 34.0
LDT-3830	LDT-3830 X	SLDT-3830	3/8	(9.5)	5/16	(7.9)	3	(76.2)	1-1/2	(38.1)	50/ 5.0	400/ 40.0
LDT-3840		SLDT-3840	3/8	(9.5)	5/16	(7.9)	4	(101.6)	2-1/2	(63.5)	50/ 6.5	400/ 52.0
LDT-3850		SLDT-3850	3/8	(9.5)	5/16	(7.9)	5	(127.0)	3-1/2	(89.0)	40/ 7.5	320/ 60.0
LDT-1230		SLDT-1230	1/2	(12.7)	7/16	(11.1)	3	(76.2)	1/2	(12.7)	25/ 4.5	150/ 27.0
LDT-1240	LDT-1240 X	SLDT-1240	1/2	(12.7)	7/16	(11.1)	4	(101.6)	1-1/2	(38.1)	25/ 6.0	150/36.6
LDT-1250	LDT-1250 X	SLDT-1250	1/2	(12.7)	7/16	(11.1)	5	(127.0)	2-1/2	(63.5)	25/ 7.6	150/45.6
LDT-1260			1/2	(12.7)	7/16	(11.1)	6	(152.4)	4	(101.6)	20/ 9.0	120/ 54.0
LDT-5830			5/8	(15.9)	1/2	(12.7)	3	(76.2)	1/4	(6.4)	10/3.5	100 / 35.0
LDT-5840	——		5/8	(15.9)	1/2	(12.7)	4	(101.6)	1-1/4	(31.8)	10/4.0	100 / 40.0
LDT-5850			5/8	(15.9)	1/2	(12.7)	5	(127.0)	2-1/4	(57.1)	10/4.7	100 / 47.0
LDT-5860			5/8	(15.9)	1/2	(12.7)	6	(152.4)	3-1/4	(82.6)	10/5.4	50 / 27.0
LDT-3444			3/4	(19.1)	5/8	(15.9)	4-1/2	(114.3)	1-1/4	(31.8)	10/7.4	50 / 37.0
LDT-3454			3/4	(19.1)	5/8	(15.9)	5-1/2	(139.7)	2-1/4	(57.1)	10/8.1	50 / 40.5
LDT-3462	——	——	3/4	(19.1)	5/8	(15.9)	6-1/4	(158.8)	3	(76.2)	10/9.1	30 / 27.3

* The stainless steel LDT's will be gold in color in order to differentiate them from the carbon steel anchors.

DESIGN GUIDE

For proper selection of anchor diameters based upon predrilled holes in base plates and fixtures.

HOLE DIAMETER IN FIXTURE In. (mm)	SUGGESTED LDT DIAMETER In. (mm)
7/16 (11.1)	3/8 (9.5)
1/2 (12.7)	3/8 (9.5)
9/16 (14.3)	1/2 (12.7)
5/8 (15.9)	1/2 (12.7)
3/4 (19.1)	5/8 (15.9)
7/8 (22.2)	3/4 (19.1)

LENGTH INDICATION CODE*

	CODE	LENGTH O In. (m	PF ANCHOR m)
TO DE	Α	1-1/2 < 2	(38.1 < 50.8)
	В	2 < 2-1/2	(50.8 < 63.5)
	C	2-1/2 < 3	(63.5 < 76.2)
	D	3 < 3-1/2	(76.2 < 88.9)
	E	3-1/2 < 4	(88.9 < 101.6)
X denotes	F	4 < 4-1/2	(101.6 < 114.3)
	G	4-1/2 < 5	(114.3 < 127.0)
available with	Н	5 < 5-1/2	(127.0 < 139.7)
Envire coating	I	5-1/2 < 6	(139.7 < 152.4)
× •	J	6 < 6-1/2	(152.4 < 165.1)

* Located on top of anchor for easy inspection.

PERFORMANCE TABLE

LDT Anchors Ultimate Tension and Shear Values (Lbs/kN) in Concrete

ANCHOR	EMBE	DMENT		f'c = 2000	PSI (13.8 MPa)			f'c = 3000 P	5I (20.7 MPa)			f'c = 4000 F	PSI (27.6 MPa)	
DIA. In. (mm)	DEPTH In. (mm)		TENSION Lbs. (kN)		SHEAR Lbs. (kN)			TENSION Lbs. (kN)		IEAR . (kN)	TENSION Lbs. (kN)		SHEAR Lbs. (kN)	
3/8 (9.5)	1-1/2	(38.1)	1,336	(5.9)	2,108	(9.4)	1,652	(7.3)	2,764	(12.3)	1,968	(8.8)	3,416	(15.2)
	2	(50.8)	1,492	(6.6)	3,036	(13.5)	2,024	(9.0)	3,228	(14.4)	2,552	(11.4)	3,420	(15.2)
	2-1/2	(63.5)	3,732	(16.6)	3,312	(14.7)	3,748	(16.7)	3,364	(15.0)	3,760	(16.7)	3,424	(15.2)
	3-1/2	(88.9)	5,396	(24.0)	3,312	(14.7)	6,624	(29.5)	3,368	(15.0)	7,852	(34.9)	3,428	(15.2)
1/2 (12.7)	2	(50.8)	3,580	(15.9)	5,644	(25.1)	3,908	(17.4)	6,512	(29.0)	4,236	(18.8)	7,380	(32.8)
	3-1/2	(88.9)	7,252	(32.3)	6,436	(28.6)	8,044	(35.8)	7,288	(32.4)	8,836	(39.3)	8,140	(36.2)
	4-1/2	(114.3)	10,176	(45.3)	7,384	(32.8)	10,332	(46.0)	7,968	(35.4)	10,488	(46.7)	8,552	(38.0)
5/8 (15.9)	2-3/4	(69.9)	5,276	(23.5)	8,656	(38.5)	6,560	(29.2)	11,064	(49.2)	7,844	(34.8)	13,476	(59.9)
	3-1/2	(88.9)	7,972	(35.5)	10,224	(45.5)	9,848	(43.8)	12,144	(54.0)	11,724	(52.2)	14,060	(62.5)
	4-1/2	(114.3)	11,568	(51.5)	12,316	(54.8)	13,432	(59.8)	13,580	(60.4)	16,892	(75.1)	14,840	(66.0)
3/4 (19.1)	3-1/4	(82.6)	6,876	(30.6)	7,140	(31.8)	9,756	(43.4)	10,728	(47.7)	12,636	(56.2)	14,316	(63.6)
	4-1/2	(114.3)	10,304	(45.8)	13,120	(58.4)	14,424	(64.2)	16,868	(75.0)	18,540	(82.5)	20,612	(91.7)
	5-1/2	(139.7)	13,048	(58.0)	17,908	(79.7)	18,156	(80.8)	21,718	(96.9)	23,268	(130.5)	25,652	(114.1)

IT W **Red Head**

Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

PERFORMANCE TABLE

LDT Anchors Allowable Tension and Shear Values* (Lbs/kN) in Concrete Carbon and Stainless Steel

ANCHOR	EMB	EDMENT		f′c = 2000	PSI (13.8 MPa))		f'c = 3000 P	SI (20.7 MPa)			f′c = 4000 P	5I (27.6 MPa)	
DIA. In. (mm)	DEPTH In. (mm)		TENSION Lbs. (kN)		SHEAR Lbs. (kN)			TENSION Lbs. (kN)		EAR (kN)	TENS Lbs.		SHI Lbs.	EAR (kN)
3/8 (9.5)	1-1/2	(38.1)	334	(1.5)	527	(2.3)	413	(1.8)	691	(3.1)	492	(2.1)	854	(3.8)
	2	(50.8)	373	(1.7)	759	(3.4)	506	(2.2)	807	(3.6)	638	(2.8)	855	(3.8)
	2-1/2	(63.5)	933	(4.2)	828	(3.7)	937	(4.2)	841	(3.7)	940	(4.2)	856	(3.8)
	3-1/2	(88.9)	1,349	(6.0)	828	(3.7)	1,656	(7.4)	842	(3.7)	1,963	(8.7)	857	(3.8)
1/2 (12.7)	2	(50.8)	895	(4.0)	1,411	(6.3)	977	(4.3)	1,628	(7.2)	1,059	(4.7)	1,845	(8.2)
	3-1/2	(88.9)	1,813	(8.0)	1,609	(7.2)	2,011	(8.9)	1,822	(8.1)	2,209	(9.8)	2,035	(9.0)
	4-1/2	(114.3)	2,544	(11.3)	1,846	(8.2)	2,583	(11.5)	1,992	(8.9)	2,622	(11.7)	2,138	(9.5)
5/8 (15.9)	2-3/4	(69.9)	1,319	(5.9)	2,164	(9.7)	1,640	(7.3)	2,766	(12.3)	1,961	(8.7)	3,369	(15.0)
	3-1/2	(88.9)	1,993	(8.9)	2,556	(11.4)	2,462	(10.9)	3,036	(13.5)	2,931	(13.0)	3,515	(15.6)
	4-1/2	(114.3)	2,892	(12.9)	3,079	(13.7)	3,358	(14.9)	3,395	(15.1)	4,223	(18.8)	3,710	(16.5)
3/4 (19.1)	3-1/4	(82.6)	1,719	(7.6)	1,785	(7.9)	2,439	(10.8)	2,682	(11.9)	3,159	(14.0)	3,579	(15.9)
	4-1/2	(114.3)	2,576	(11.5)	3,280	(14.6)	3,606	(16.0)	4,217	(18.7)	4,635	(20.6)	5,153	(22.9)
	5-1/2	(139.7)	3,262	(14.5)	4,477	(19.9)	4,539	(20.2)	5,445	(24.2)	5,817	(25.9)	6,413	(28.5)

* Allowable values are based upon a 4 to 1 safety factor. (Ultimate/4)

PERFORMANCE TABLE

LDT Anchors Recommended Edge & Spacing Requirements for Tension Loads* Carbon and Stainless Steel

_			Curbo		<u>anness st</u>	661			
	HOR DIA. . (mm)	EMBEDMENT DEPTH In. (mm)		EDGE DISTANCI OBTAIN MAX. In. (1	WORKING LOAD	AT MIN. EDGE DISTANCE 1-3/4 Inches (44mm)	OBTAIN MAX	NCE REQUIRED TO (. WORKING LOAD). (mm)	LOAD FACTOR APPLIED AT MIN. SPACING DISTANCE 3 Inches (76mm)
		1-1/2	(38.1)	2	(50.8)	70%	6	(152.4)	44%
2/0	(0.5)	2	(50.8)	2	(50.8)	70%	6	(152.4)	44%
3/8	(9.5)	2-1/2	(63.5)	3	(76.2)	70%	6	(152.4)	44%
		3-1/2	(88.9)	4	(101.6)	70%	6	(152.4)	44%
		2	(50.8)	2-1/4	(57.2)	65%	8	(203.2)	27%
1/2	(12.7)	3-1/2	(88.9)	3	(76.2)	65%	8	(203.2)	27%
		4-1/2	(114.3)	4	(101.6)	65%	8	(203.2)	27%
	HOR DIA. . (mm)	EMBEDMENT DEPTH In. (mm)		OBTAIN MAX. WORKING LOAD		AT MIN. EDGE DISTANCE 1-3/4 Inches (44mm)	OBTAIN MAX	NCE REQUIRED TO (. WORKING LOAD). (mm)	LOAD FACTOR APPLIED AT MIN. SPACING DISTANCE 3.75 Inches (95.2mm)
		2-3/4	(69.9)	6-1/4	(158.8)	65%	10	(254)	50%
5/8	(15.9)	3-1/2	(88.9)	6-1/4	(158.8)	65%	10	(254)	50%
		4-1/2	(114.3)	6-1/4	(158.8)	65%	10	(254)	50%
	HOR DIA. . (mm)	EMBEDMENT DEPTH In. (mm) In. (mm) In. (mm)		WORKING LOAD	AT MIN. EDGE DISTANCE 1-3/4 Inches (44mm)	OBTAIN MAX	NCE REQUIRED TO (. WORKING LOAD). (mm)	LOAD FACTOR APPLIED AT MIN. SPACING DISTANCE 4.5 Inches (114.3mm)	
		3-1/2	(82.6)	7-1/2	(191)	65%	12	(305)	50%
3/4	(19.1)	4-1/2	(114.3)	7-1/2	(191)	65%	12	(305)	50%
		5-1/2	(139.7)	7-1/2	(191)	65%	12	(305)	50%

* Edge and spacing distance shall be divided by .75 when anchors are placed in structural lightweight concrete. Linear interpolation may be used for intermediate spacing and edge distances.

For 5/8" and 3/4" LDT Anchors, the critical edge distance for these anchors is 10 times the anchor diameter. The edge distance of these anchors may be reduced to 1-3/4" provided a 0.65 load factor is used for tension loads, a 0.15 load factor is used for shear loads applied perpendicular to the edge, or a 0.60 load factor is used for shear loads applied parallel to the edge. Linear interpolation may be used for intermediate edge distances.

PERFORMANCE TABLE

LDT Anchors Recommended Edge & Spacing Requirements for Shear Loads* Carbon and Stainless Steel

	OR DIA. (mm)	EMBEDMENT DEPTH In. (mm)		EDGE DISTANCE REQUIRED TO OBTAIN MAX. WORKING LOAD In. (mm)		AT MIN. EDGE DISTANCE 1-3/4 Inches (44mm)	OBTAIN MAX	NCE REQUIRED TO . WORKING LOAD . (mm)	LOAD FACTOR APPLIED AT MIN. SPACING DISTANCE 3 Inches (76mm)
		1-1/2	(38.1)	3	(76.2)	25%	6	(152.4)	57%
3/8	(9.5)	2	(50.8)	4	(101.6)	25%	6	(152.4)	57%
3/0	(9.5)	2-1/2	(63.5)	5	(127.0)	25%	6	(152.4)	57%
		3-1/2	(88.9)	5	(127.0)	25%	6	(152.4)	57%
		2	(50.8)	5	(127.0)	25%	8	(203.2)	60%
1/2	(12.7)	3-1/2	(88.9)	5	(127.0)	25%	8	(203.2)	60%
		4-1/2	(114.3)	5-1/2	(139.7)	25%	8	(203.2)	60%
		2-3/4	(69.9)	6-1/4	(158.8)	15%**/60%***	10	(254)	75%
5/8	(15.9)	3-1/2	(88.9)	6-1/4	(158.8)	15%**/60%***	10	(254)	75%
		4-1/2	(114.3)	6-1/4	(158.8)	15%**/60%***	10	(254)	75%
		3-1/2	(82.6)	7-1/2	(191)	15%**/60%***	12	(305)	75%
3/4	(19.1)	4-1/2	(114.3)	7-1/2	(191)	15%**/60%***	12	(305)	75%
		5-1/2	(139.7)	7-1/2	(191)	15%**/60%***	12	(305)	75%

* Edge and spacing distances shall be divided by .75 when anchors are placed in structural lightweight concrete. Linear interpolation may be used for intermediate spacing and edge distances.

** 15% = shear load applied perpendicular to the edge

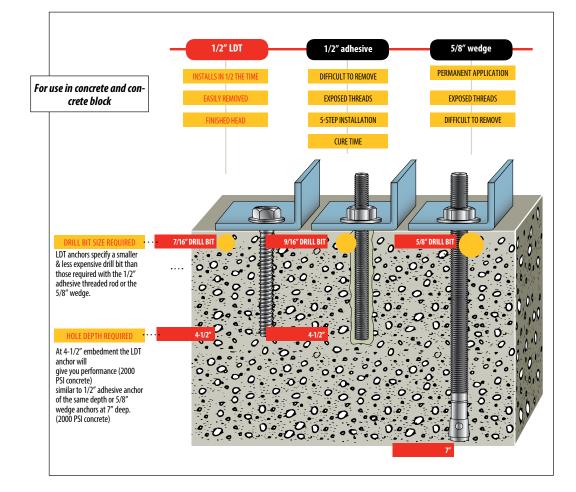
*** 60% = shear load applied parallel to the edge

PERFORMANCE TABLES

LDT Anchors (anchors should be installed by hand in hollow block)

ANCHOR DIA. In. (mm)	EMBEDMENT DEPTH	HOLLOW CON	ICRETE BLOCK	GROUT FILLED CONCRETE BLOCK			
<i>(</i>)	In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)		
3/8 (9.5)	1-1/2 (38.1)	916 (4.1)	3,176 (14.1)	1,592 (7.1)	3,900 (17.3)		
1/2 (12.7)	2-1/2 (63.5)	N/A	N/A	5,924 (26.4)	6,680 (29.7)		

LDT Anchors (anchors should be installed by hand in hollow block)


ANCHOR DIA. In. (mm)	EMBEDMENT DEPTH	HOLLOW CON	ICRETE BLOCK	GROUT FILLED CONCRETE BLOCK			
()	In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)		
3/8 (9.5)	1-1/2 (38.1)	229 (1.0)	794 (3.5)	398 (1.8)	975 (4.3)		
1/2 (12.7)	2-1/2 (63.5)	N/A	N/A	1,481 (6.6)	1,670 (7.4)		

* Allowable values are based upon a 4 to 1 safety factor. (Ultimate/4)

LDT Anchors Anchoring Overhead in 3000 PSI Lightweight Concrete On Metal Deck

Upper Flute 20 Gauge Metal Deck

	concrete	On Metal Deck	<u>.</u>		Lower Hute			
ANCHOR	DRILL HOLE	DRILL HOLE EMBEDMENT		3000PSI (20.7 MPa) CONCRETE				
	DIAMETER In. (mm)	In. (mm)		TENSION LOAD 5. (kN)	ALLOWABLE WORKING LOAD Lbs. (kN)			
3/8″ LDT	5/16 (7.9)	1-1/2 (38.1)	Upper Flute	2,889 (12.9)	722 (3.2)			
			Lower Flute	1,862 (8.3)	465 (2.1)			

Tapcon +

The Original Concrete Screw Anchor

Approved for Cracked, Uncracked, and Seismic Conditions

Tapcon+ out performs traditional wedge anchor products, providing greater load capacity while reducing installation time by up to 50%, offering significant cost-in-place savings on the job site.

Since patenting the original screw anchor for concrete in 1976, Tapcon[®] products have continued to offer innovative solutions in concrete anchoring. Now, **Tapcon+** is available with International Building Code (IBC) compliance and other third party listings for use in cracked concrete and seismic applications.

In the Engineering Office

On the Job

- Outperforms wedge anchors in tension, shear, and anchor spacing
- Approved for concrete in cracked, uncracked, and seismic conditions
- Simplicity of installation improves "buildability" on the job site
- Blue Climaseal[®] for superior corrosion resistance
- Installs faster and easier than wedge anchors — reducing total installed cost and delivering projects faster
- Removable for temporary fixing
- Installs without hammering and precision torque wrench
- One fastening solution for multiple applications and materials
- Does not require onsite inspection

Available Sizes – Tapcon+ and Accessories

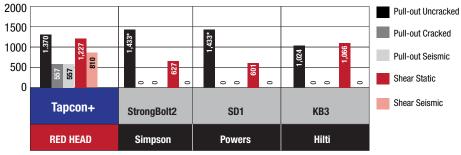
5	Anchor Diameter	Length (Under Head)	Drill Diameter	Base Plate Hole Dia.	Quantity (Ctn/Box)	Part No.
	1/4"	2-1/4"	1/4"* Tapcon+ or	3/8"	800 / 100	3511407
	1/4	3"	ANSI Bit	3/8	800 / 100	3507407
	2 /0"	3"		1/2"	400 / 50	3508407
	3/8"	4"	3/8" ANSI	1/2"	400 / 50	3509407
	1/2"	6"	1/2" ANSI	5/8"	160/20	3510407

*Note - 1/4" diameter anchors require tight tolerance drill bit to ensure Category 1 performance.

Use 1/4-7" Tapcon+ SDS drill bit, Part No. 3512909

Applications

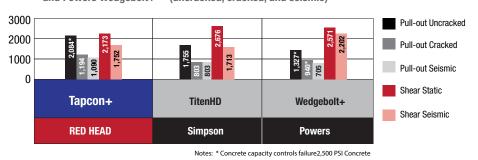
City of Los Angeles (1/4" & 3/8" diameters) and Florida Building Code Compliant

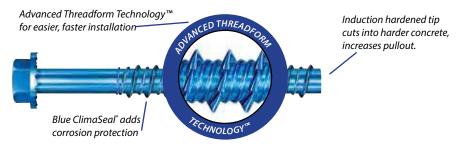


Product Characteristic							
Nominal Diameter	1/4'	1	3	8/8"	1/2"		
Head Style	Hex He	ead	Hex	Head	Hex Head		
Baseplate Hole Diameter	3/8'	1	1	/2"	5/8"		
Length (in)	2-1/4	3	3	4	6		
Part No.	3511407	3511407 3507407		3509407	3510407		
Coating	Blue Climaseal [®]		Blue C	limaseal°	Blue Climaseal [®]		
Point	Bull No	ose	Bul	l Nose	Bull Nose		
ICC-ES Report No	ESR-36	599	ESR	-3699	ESR-3699		
Cracked Concrete	Approv	ved	App	proved	Approved		
Seismic	Approv	ved	Арр	proved	Approved		
City of Los Angeles (COLA)	Approved - CO	DLA 25975	Approved - COLA 25975		N/A		
Florida Building Code (FBC)	Approved -	FL 17072	Approved	d - FL 17072	Approved - FL 17072		

See Appendix D for Tapcon+ Strength Design Performance Values

Performance vs. Wedge Anchor 1/4"


- Cracked concrete and seismic performance at 1/4" diameter
- Performance equals wedge anchor performance in uncracked concrete applications



Notes: * Concrete capacity controls failure 2,500 PSI Concrete

Performance vs. Competitive Screw Anchor 3/8"

 Superior pull out compared to Simpson TitenHD[™] and Powers Wedgebolt+[™] (uncracked, cracked, and seismic)

Consult ICC-ESR 3699 for a full technical report. Available at www.itwredhead.com

Installation Instructions

Drill a hole that is at least a ¼" deeper than the anchor embedment.

Using

Variable Speed Concrete Hammer Drill & Carbide Drill Bit

1/4 x 7" Tapcon SDS Drill Bit (3512909) or 1/4" ANSI Drill Bit or 3/8" ANSI Drill Bit or 1/2" ANSI Drill Bit

Using pressurized air or a vacuum, remove the drilling debris from the hole. *Using*

Air Compressor or Standard Vacuum Cleaner

Drive Tapcon+ screw anchor through fixture (bracket, or attachment plate), until fully seated.

Using

Six Point Impact Socket 3/8" Socket for 1/4" Anchors 9/16" Socket for 3/8" Anchors 3/4" Socket for 1/2" Anchors

Impact Wrench 115 Max ft-lbf for 1/4" Anchors 200 Max ft-lbf for 3/8" Anchors 345 Max ft-lbf for 1/2" Anchors

INSTALLATION STEPS

		Post-Torque	
	April 1000 - 000 -	Future The second seco	

DESCRIPTION/SUGGESTED SPECIFICATIONS

SPECIFIED FOR ANCHORAGE INTO CONCRETE

The Boa[™] Coil is a high performance expansion anchor providing through fixture fastening and easy removal to keep the job moving. It's reusable with the coil replacement anchors making this anchor a low cost solution.

Ideal combination of value, performance and reusability make the Boa Coil the choice for Forming and tilt-wall contractors.

ADVANTAGES: Easy installation, removable, reusable, high shear strength, Grade 5 bolt.

APPLICATIONS: Concrete formwork, load bearing angles, beams and columns, machinery holddown, Jersey barrier, glare screens, light rail/commuter work.

NOTE: To achieve maximum loads the installation process needs to be carried out as follows:

- 1. Using the fixture as a template, drill the correct diameter and depth hole.
- 2. Remove debris with vacuum or hand pump.
- 3. Insert the assembled Boa Coil anchor. (The coil anchor tab points up the anchor.) Tap anchor down to depth set mark and stop.
- 4. Tighten until washer is firmly held to the fixture and stop. Number of turns to set anchor: 1/2'' 3-4 turns, 5/8'' and 3/4'' 4-5 turns. Ensure washer is tight and snug fit.
- 5. The anchor is ready to take load. (The bolt can be removed leaving the coil in the hole.) The Boa coil anchor can be <u>reused up to 3 times</u> in new holes.

SELECTION CHART

Boa Coil Anchors

PART NO.	ANCHOR DIA In. (mm)	SOCKET SIZE In.	DRILL BIT DIA. In. (mm)	HOLE DEPTH In. (mm)	FIXTURE THICKNESS AT MINIMUM EMBEDMENT TO BE FASTENED In. (mm)	QTY/WT PER BOX Lbs.	QTY/WT PER MASTER CTN Lbs.
RHCA-1230	1/2 (12.7)	3/4	1/2 (12.7)	3-1/2 (88.9)	3/8 (9.5)	25 / 4.5	150 / 27.2
RHCA-1240	1/2 (12.7)	3/4	1/2 (12.7)	4-1/2 (114.3)	1-3/8 (35.0)	25 / 5.9	150 / 35.6
RHCA-1254	1/2 (12.7)	3/4	1/2 (12.7)	6 (152.4)	2-7/8 (73.0)	25 / 7.8	150 / 46.9
RHCA-5834	5/8 (15.9)	15/16	5/8 (15.9)	4 (101.6)	3/8 (9.5)	20 / 8.8	120 / 52.5
RHCA-5850	5/8 (15.9)	15/16	5/8 (15.9)	5-1/2 (139.7)	1-7/8 (47.6)	15 / 8.5	90 / 51.0
RHCA-3444	3/4 (19.1)	1-1/8	3/4 (19.1)	5 (127.00)	1/4 (6.4)	10 / 6.4	60 / 38.3
RHCA-3460	3/4 (19.1)	1-1/8	3/4 (19.1)	6-1/2 (165.1)	1-3/4 (44.5)	10 / 8.2	60 / 49.1

Replacement coil available for easy re-use with Red Head Boa Coil Anchors only.

COIL REPLACEMENT PART NO.	QTY/WT PER BOX Lbs.	QTY/WT PER MASTER CTN Lbs.
RHC-12 (1/2")	100 / 2.8	600/16.9
RHC-58 (5/8")	100 / 2.2	600/13.1
RHC-34 (3/4")	100 / 1.3	600/7.5

PERFORMANCE TABLES

Boa Coil Anchors Ultimate concrete/steel capacity in concrete¹

ANCHOR DIAMETER	HOLE DIA. In. (mm)	EFFECTIVE EMBEDMENT	FIXTURE HOLE DIA.	TURNS TO SET	2,000 PS	l I (13.8 MPa)	(41.4 MPa)	ULTIMATE STEEL STRENGTH (4) LBS. (kN)				
In. (mm) DEPTH In. (mm) In. (mm)		ANCHOR	TENSION (5) Lbs. (kN)	SHEAR Lbs. (kN)	TENSION (5) Lbs. (kN)	SHEAR Lbs. (kN)	TENSION (5) Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)		
1/2 (12.7)	1/2 (12.7)	2 (50.8) 3 (76.2)	9/16 (14.3) 9/16 (14.3)		4,039 (17.9) 7,403 (32.9)	6,070 (27.0) 12,082 (53.7)	5,715 (25.4) 10,471 (46.6)	8,590 (38.2) 17,089 (76.0)	6,994 (31.1) 12,822 (57.0)	10,516 (46.8) 20,937 (93.1)	19,384 (86.2)	14,456 (64.3)
5/8 (15.9)	5/8 (15.9)		11/16 (17.5) 11/16 (17.5)		5,291 (23.5) 10,855 (48.3)	8,800 (39.1) 19,999 (89.0)	7,483 (33.3) 15,355 (68.3)	12,445 (55.4) 28,285 (125.8)	9,162 (40.8) 18,802 (83.6)	15,242 (67.8) 34,636 (154.0)	30,152 (134.1)	21,937 (97.6)
3/4 (19.1)	,	4-1/2 (114.3)		4-5	8,479 (37.7) 13,555 (60.3)	16,567 (73.7) 27,239 (121.2)	11,991 (53.3) 19,171 (85.3)	23,427 (104.2) 38,518 (171.3)	14,682 (65.3) 23,478 (104.4)	28,690 (127.6) 47,173 (209.8)	43,360 (192.9)	32,031 (142.5)

(1) Use lower value of either concrete or steel (2) Concrete capacity based on Concrete Capacity Design method and verified by test data (3) Influence factors must be applied to concrete strength values (4) Steel strength based on .57 Fu Ag for shear and 0.75 Fu Ag for tension (5) Test results when reused four times; maximum 20% reduction in tensile capacity; no reduction in shear

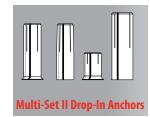
Boa Coil Anchors Allowable concrete/steel capacity in concrete¹

ANCHOR	HOLE DIA.	EFFECTIVE	FIXTURE	TURNS		RECOMM	ENDED WORKING L	OADS IN CONCRET	E (2) (3)		ALLOWABLE STEEL STRENGTH (4)		
DIAMETER	In. (mm)	EMBEDMENT	HOLE DIA.	TO SET	2,000 PSI	(13.8 MPa)	4,000 PS	l (27.6 MPa)	6,000 PSI	(41.4 MPa)	LBS. (kN)		
In. (mm) DEPTH In. In. (mm)		ln. (mm)	ANCHOR	TENSION (5) Lbs. (kN)	SHEAR Lbs. (kN)	TENSION (5) Lbs. (kN)	SHEAR Lbs. (kN)	TENSION (5) Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)		
1/2 (12.7)	1/2 (12.7)	2 (50.8) 3 (76.2)	9/16 (14.3) 9/16 (14.3)		1,011 (4.5) 1,852 (8.2)	1,517 (6.7) 3,020 (13.4)	1,430 (6.4) 2,619 (11.6)	2,147 (9.5) 4,272 (19.0)	1,751 (7.8) 3,208 (14.3)	2,629 (11.7) 5,234 (23.3)	8,529 (37.9)	5,579 (24.8)	
5/8 (15.9)	5/8 (15.9)		11/16 (17.5) 11/16 (17.5)		1,324 (5.9) 2,715 (12.1)	2,200 (9.8) 5,000 (22.2)	1,872 (8.3) 3,840 (17.1)	3,111 (13.8) 7,071 (31.5)	2,293 (10.2) 4,703 (20.9)	3,810 (16.9) 8,660 (38.5)	13,266 (59.0)	8,466 (37.7)	
3/4 (19.1)	3/4 (19.1)	3-1/4 (82.6) 4-1/2 (114.3)	13/16 (20.6) 13/16 (20.6)		2,121 (9.4) 3,390 (15.1)	4,141 (18.4) 6,810 (30.3)	2,999 (13.3) 4,794 (21.3)	5,556 (24.7) 9,630 (42.8)	3,673 (16.3) 5,872 (26.2)	7,172 (31.9) 11,793 (52.4)	19,078 (84.9)	12,362 (55.0)	

(1) Use lower value of either concrete or steel (2) Safety factor 4 (3) Influence factors must be applied to concrete strength values (4) Steel strength based on .22 Fu Ag for shear and 0.33 Fu Ag for tension (5) Test results when reused four times; maximum 20% reduction in tensile capacity; no reduction in shear

IT W Red Head®

Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>


Internally Threaded Heavy-Duty Anchoring Systems

DESCRIPTION/SUGGESTED SPECIFICATIONS

Drop-In, Shell-Type Anchors—

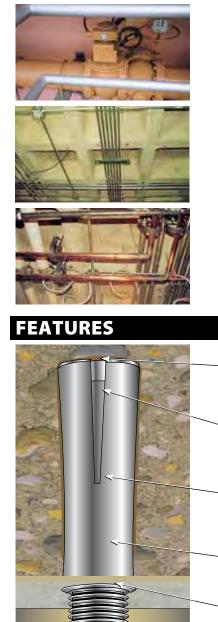
SPECIFIED FOR ANCHORAGE INTO CONCRETE

Drop-In, shell-type anchors feature an internally threaded, all-steel shell with expansion cone insert and flush embedment lip. Anchors are manufactured from zinc-plated carbon steel, 18-8 stainless steel and 316 stainless steel.

Anchors should be installed with carbide tipped hammer drill bits made in accordance to ANSI B212.15-1994 specifications.

Anchors should be tested to ASTM E488 criteria and listed by ICC-ES. Anchors should also be listed by the following agencies as required by the local building code: UL, FM, City of Los Angeles, California State Fire Marshal and Caltrans.

ADVANTAGES



😓 RED HEAD

Multi-Set II Anchors

APPLICATIONS

For use with threaded rods or headed bolts (supplied by contractor)

Pumps and heavy piping are common applications for larger diameter Multi-Set Drop-In Anchors.

Cable tray and strut suspended from concrete ceilings are ideal Multi-Set applications. In post-tension or hollow-core slabs use the RX-38.

The Multi-Set Anchor is the standard for pipe-hanging. The RM version has a retainer lip to keep all anchors flush at the surface, keeping all your threaded rod the same length.

Expander Slots—allow for easy setting and superior performance

Cone Insert—that expands the anchor when driven with setting tool and hammer

Body—available in zinc-plated steel, 18-8 stainless steel, and 316 stainless steel

Easy Depth Inspection—keeps threaded rod drop lengths consistent

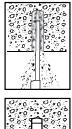
Retainer Lip—to keep anchor flush with surface

APPROVALS/LISTINGS

Meets or exceeds U.S. Government G.S.A. Specification A-A-55614 Type 1 (Formerly GSA: FF-S-325 Group VIII)

Underwriters Laboratories

Factory Mutual


Caltrans

For the most current approvals/listings visit: www.itw-redhead. com

INSTALLATION STEPS

- To set anchor flush with surface:
 - Drill hole to required embedment (see Table on page 69).

- **2.** Clean hole with pressurized air.
- **3.** Drive anchor flush with surface of concrete.
- Expand anchor with setting tool provided (see chart on page 69). Anchor is properly expanded when shoulder of setting tool is flush with top of anchor.

SELECTION CHART

Multi-Set II Depth Charge Bits

	,	
PART NUMBER	DESCRIPTION FEATURE BENEFITS	DRILLING DEPTH
DCX-138	3/8" Depth Charge Stop Drill	3/4″
DCX-112	1/2" Depth Charge Stop Drill	1″

Shoulder prevents over drilling. Less likely to hit reinforcing steel or post-tension cable in concrete

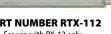
- No wasted time or energy drilling deeper than necessary
- Prevents anchor from dropping too far into hole below work surface

SELECTION CHARTS

	u lti-S op-In An		PART NUMBER 1 setting tool per ma (See above for part	aster carton			UMBER RTX e with RX-38 only		PART NUMBER RTX- For use with RX-12 only.		
USER TYPE / APPLICATION	BASE MATERIAL	CORROSION RESISTANCE LEVEL	DROP-IN ANCHOR TYPE	PART NUMBER	SETTING TOOL PART NUMBER*	BOLT SIZE- THREADS PER INCH	DRILL BIT DIA. In. (mm)	THREAD DEPTH In. (mm)	EMBEDMENT MIN. HOLE DEPTH*** In. (mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CTN Ibs. *
HVAC/Fire Sprinkler	Solid	Low	RM	RM-14	RT-114	1/4″ - 20	3/8 (9.5)	3/8 (9.5)	1 (25.4)	100/ 2.6	1000/ 28
Plumber (Pipe-fitter)	concrete/			RM-38	RT-138	3/8″ - 16	1/2 (12.7)	1/2 (12.7)	1-5/8 (41.3)	50/ 3.4	500/36
	lightweight			RM-12	RT-112	1/2″ - 13	5/8 (15.9)	3/4 (19.1)	2 (50.8)	50/ 5.8	400/49
	fill deck			RM-58	RT-158	5/8″ - 11	7/8 (22.2)	1 (25.4)	2-1/2 (63.5)	25/ 7.8	125/41
				RM-34	RT-134	3/4″ - 10	1 (25.4)	1-1/4 (31.8)	3-3/16 (81.0)	25/11.9	100/49
	Hollow-core	Low	RX	RX-38	RTX-138	3/8″ - 16	1/2 (12.7)	3/8 (9.5)	3/4 (19.1)	100/ 3.5	1000/36
	pre-cast			RX-12	RTX-112	1/2″ - 13	5/8 (15.9)	1/2 (12.7)	1 (25.4)	50/ 3.0	500/ 31
	or Post-										
	tension										
	Solid	Medium	SRM**	SRM-14	RT-114	1/4″ - 20	3/8 (9.5)	3/8 (9.5)	1 (25.4)	100/ 2.7	1000/ 28
	concrete/		18-8 S.S.	SRM-38	RT-138	3/8″ - 16	1/2 (12.7)	1/2 (12.7)	1-5/8 (41.3)	50/ 3.4	500/36
	lightweight			SRM-12	RT-112	1/2″ - 13	5/8 (15.9)	3/4 (19.1)	2 (50.8)	50/ 6.0	400/ 50
	fill deck			SRM-58	RT-158	5/8″ - 11	7/8 (22.2)	1 (25.4)	2-1/2 (63.5)	25/ 7.9	125/42
			,	SRM-34	RT-134	3/4″ - 10	1 (25.4)	1-1/4 (31.8)	3-3/16 (81.0)	25/12.0	100/ 50
	Solid	High	SSRM**								
concrete		316 S.S.	SSRM-12	RT-112	1/2″ - 13	5/8	(15.9) 3/4	(19.1) 2	(50.8) 50/	6.0	400/50
Concrete Contractor,	Solid	Low	CL-Coil	CL-12	RT-112	1/2″ - 6	5/8 (15.9)	3/4 (19.1)	2 (50.8)	50/ 5.7	400/47
General Contractor,	concrete		Threaded	CL-34	RT-134	3/4" - 4.5	1 (25.4)	1-1/4 (31.8)	3-3/16 (81.0)	25/11.9	100/49
Highway											
Concrete Cutting/	Solid	Low	RL	RL-14	RT-114	1/4″ - 20	3/8 (9.5)	3/8 (9.5)	1 (25.4)	100/ 2.6	1000/28
Sawing Contractor/	concrete/		(w/o lip)	RL-38	RT-138	3/8″ - 16	1/2 (12.7)	1/2 (12.7)	1-5/8 (41.3)	50/ 3.4	500/36
Misc. Metal	lightweight			RL-12	RT-112	1/2″ - 13	5/8 (15.9)	3/4 (19.1)	2 (50.8)	50/ 5.8	400/49
	fill deck			RL-58	RT-158	5/8″ - 11	7/8 (22.2)	1 (25.4)	2-1/2 (63.5)	25/ 7.8	125/41
				RL-34	RT-134	3/4″ - 10	1 (25.4)	1-1/4 (31.8)	3-3/16 (81.0)	25/11.9	100/49

* 1 setting tool per master carton.

** For continuous extreme low temperature, use stainless steel.


***Embedment is equal to overall length of Drop-In Anchor

Part No.	Description
RX-38	3/8" drop-in using 1/2" drill bit
RTX-138	Setting Tool
DCX-138	Depth Charge Stop Drill

Part No.	Description
RX-12	1/2" drop-in using 5/8" drill bit
RTX-112	Setting Tool
DCX-112	Depth Charge Stop Drill

PERFORMANCE TABLE

Multi-Set II Ultimate Tension and Shear Values (Lbs/kN) in Concrete* **Drop-In Anchors TENSION Lbs. (kN)** DRILL BIT **MIN. EMBEDMENT** ANCHOR SHEAR Lbs. (kN) **BOLT** DIA. SI7F DFPTH TYPF f'c = 2000 PSI f'c = 4000 PSI f'c = 6000 PSI f'c >2000 PSI In. (mm) In. (mm) In. (mm) (13.8 MPa) (27.6 MPa) (41.4 MPa) (13.8 MPa) 1/4 (6.4) 3/8 (9.5) (25.4) 1,680 (7.5) (10.5) 2,980 (13.3) 1,080 1 2.360 (4.8) RM, RL 3/8 (9.5) 1/2 (12.7) 2,980 (13.3) 6,240 (27.8) (14.1)1-5/8 (41.3) 3,800 (16.9) 3,160 or CL-Carbon 1/2 (12.7) 5/8 (15.9) 2 (50.8) 3,300 (14.7) 5,840 (26.0) 8,300 (36.9) 4,580 (20.4) or SRM-18-8 S.S. or 8,640 5/8 (15.9) 7/8 (22.2) 2 - 1/2(63.5) 5,500 (24.5) (38.4) 11,020 (49.0) 7,440 (33.1)SSRM-316 S.S. 3/4 (19.1) 1 (25.4) 3-3/16 (81.0) 8,280 (36.8) 9,480 (42.2) 12,260 (54.5) 10,480 (46.6)

* Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

* For continuous extreme low temperature applications, use stainless steel.

Multi-Set IIUltimate Tension and Shear Values (Lbs/kN) in
Lightweight Concrete*

BOLT DIA. In. (mm)	DRILL BIT SIZE In. (mm)	MINIMUM EMBEDMENT DEPTH	ANCHOR TYPE		HT CONCRETE PSI (20.7 MPa)	LOWER FLUTE OF STEEL DECK WITH LIGHTWEIGHT CONCRETE FILL f'c = 3000 PSI (20.7 MPa)				
		In. (mm)		In. (mm) TENSION SHEAR Lbs. (kN) Lbs. (kN)				TENSION Lbs. (kN)	SHEAR Lbs. (kN)	
3/8 (9.5)	1/2 (12.7)	1-5/8 (39.7)	RM, RL	2,035 (9.1)	1,895 (8.4)	3,340 (14.9)	4,420 (19.6)			
1/2 (12.7)	5/8 (15.9)	2 (50.8)	or CL-Carbon or	2,740 (12.2)	2,750 (12.2)	3,200 (14.2)	4,940 (22.0)			
5/8 (15.9)	7/8 (22.2)	2-1/2 (63.5)	SRM-18-8 S.S. or SSRM-316 S.S.	4,240 (18.9)	4,465 (19.9)	5,960 (26.5)	5,840 (26.0)			
3/4 (19.1)	1 (25.4)	3-3/16 (81.0)		5,330 (23.7)	6,290 (28.0)	8,180 (36.4)	9,120 (40.6)			

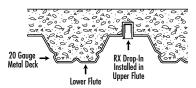
* Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

Multi-Set II Drop-In Anchors Recommended Edge and Spacing Distance Requirements*

					-		-				
BOLT DIA. In. (mm)	DRILL BIT SIZE In. (mm)	EMBEDMENT DEPTH In. (mm)	ANCHOR TYPE	REQU OBTA WORK	DISTANCE IIRED TO IIN MAX. ING LOAD (mm)	DISTAN Load Fa =.80 F =.70	N. EDGE CE AT WHICH CTOR APPLIED OR TENSION FOR SHEAR . (mm)	REQU OBT# WORK	ACING JIRED TO JIN MAX. JING LOAD . (mm)	BETWEEI LOAD FAC =.80 FO =.55 F	ABLE SPACING N ANCHORS FOR APPLIED R TENSION DR SHEAR (mm)
1/4 (6.4)	3/8 (9.5)	1 (25.4)		1-3/4	(44.5)	7/8	(22.2)	3-1/2	(88.9)	1-3/4	(44.5)
3/8 (9.5)	1/2 (12.7)	1-5/8 (41.3)	RM, RL or CL-Carbon	2-7/8	(73.0)	1-7/16	(36.5)	5-11/16	(144.5)	2-7/8	(73.0)
1/2(12.7)	5/8 (15.9)	2 (50.8)	or	3-1/2	(88.9)	1-3/4	(44.5)	7	(177.8)	3-1/2	(88.9)
5/8(15.9)	7/8 (22.2)	2-1/2 (63.5)	SRM-18-8 S.S. or SSRM-316 S.S.	4-3/8	(111.1)	2-3/16	(55.6)	8-3/4	(222.3)	4-3/8	(111.1)
3/4(19.1)	1 (25.4)	3-3/16 (81.0)	551111 510 5.5.	5-5/8	(142.9)	2-13/16	(71.4)	11-3/16	(284.2)	5-5/8	(142.9)

* Spacing and edge distances shall be divided by 0.75 when anchors are placed in structural lightweight concrete. Linear interpolation may be used for intermediate spacing and edge distances.

PERFORMANCE TABLES


Multi-Set || Ultimate Tension and Shear Values (Lbs/kN) for RX-series Drop-In Anchors (3/4" and 1" Embedment)*

BOLT DIA.	DRILL BIT	EMBEDMENT	2500 PSI (17.2	MPa) CONCRETE	4000 PSI (27.6	MPa) CONCRETE	HOLLO	DW CORE
In. (mm)	SIZE In. (mm)	In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)
3/8 (9.5)	1/2 (12.7)	3/4 (19.1)	1,571 (7.0)	2,295 (10.2)	1,987 (8.8)	2,903 (12.9)	1,908 (8.5)	2,401 (10.7)
1/2 (12.7)	5/8 (15.9)	1 (25.4)	2,113 (9.4)	2,585 (11.5)	2,673 (11.9)	3,270 (14.5)	2,462 (11.0)	2,401 (10.7)

* The tabulated values are for RX anchors installed at a minimum of 12 diameters on center and minimum edge distance of 6 diameters for 100 percent anchor efficiency. Spacing and edge distance may be reduced to 6 diameters spacing and 3 diameter edge distance provided the values are reduced 50 percent. Linear Interpolation may be used for intermediate spacings and edge margins.

* Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

Multi-Set II Anchoring Overhead in 3000 PSI Drop-In Anchors Lightweight Concrete On Metal Deck

ANCHOR	DRILL HOLE	EMBEDMENT		3000PSI (20.7 MPa)	CONCRETE
	DIAMETER In. (mm)	In. (mm)		ENSION LOAD (kN)	ALLOWABLE WORKING LOAD Lbs. (kN)
RX-38 Drop-In	1/2 (12.7)	3/4 (19.1)	Upper Flute	1,410 (6.3)	353 (1.6)
			Lower Flute	1,206 (5.4)	301 (1.3)

* Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values.

Combined Tension and Shear Loading—for Multi-Set Anchors

Allowable loads for anchors subjected to combined shear and tension forces are determined by the following equation:

 $(Ps/Pt)^{5/3} + (Vs/Vt)^{5/3} \le 1$

Ps = Applied tension load	Vs = Applied shear load
i s hippineu tension touu	is hipplica shear ioua

Pt = Allowable tension load

Vt = Allowable shear load

Dynabolt[®] Sleeve Anchors

Versatile, Medium-Duty Sleeve Anchor

Dynabolt Hex Nut Sleeve Anchor

APPROVALS/LISTINGS

Meets or exceeds U.S. Government G.S.A. Specification A-A-1922A (Formerly GSA: FF-S-325 Group II, Type 3, Class 3) Factory Mutual

DESCRIPTION/SUGGESTED SPECIFICATIONS

Sleeve Type Anchors—

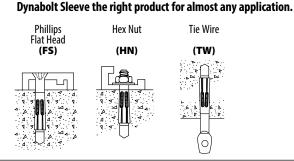
SPECIFIED FOR ANCHORAGE INTO CONCRETE, GROUT-FILLED CONCRETE BLOCK, HOLLOW CONCRETE BLOCK AND BRICK

Dynabolt Masonry Sleeve Anchor Sleeve type anchors feature a split expansion sleeve over a threaded stud bolt body and integral expander, nut and washer.

Anchors are made of Plated Carbon Steel, or Type 18-8 Stainless Steel.

Anchors should be installed with carbide tipped hammer drill bits made in accordance to ANSI B212.15-1994.

Anchors are tested to ASTM E488 criteria.


ADVANTAGES

- Anchor diameter equals hole diameter
- Available in hex head and three other head styles
- Available 1/4 3/4" diameter up to 6-1/4" length
- Zinc plated carbon steel and 304 stainless steel
- Provides full 360° hole contact over large area and reduces concrete stress

Heavy-loading capacity Preassembled for faster, easier installations

- Dynabolt can be installed through object to be fastened
- Sleeve design improves holding power
- No pre-spotting of holes necessary

Available Head Styles Full range of head style, corrosion protection, and sizes makes the

INSTALLATION STEPS

1.

 Use a carbide tipped drill bit whose diameter is equal to the anchor.
 See Chart to determine proper size bit for anchor used. Dnll hole to any depth exceeding minimum embedment. Clean hole.

2. Insert assembled anchor through fixture and into hole so that washer or head is flush with materials to be fastened.

3. Expand anchor by tightening nut or head 2 to 3 turns.

APPLICATIONS

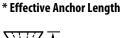
Electrical junction boxes are common applications for the Dynabolt Sleeve anchor because it works well in solid concrete, concrete block, and brick. It is also available in several finished head styles.

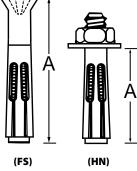
The Dynabolt Sleeve anchor works well in hollow materials like brick and block. It is available in zinc-plated carbon steel and 304 stainless steel.

Door and window frames are commonly attached to the structure with Dynabolt Sleeve anchors because of their finished & threshold head styles and performance in block & brick.

85

SELECTION CHART





Typical Applications— Shelf ledgers, electrical box conduit Environment—Interior (non-corrosive) Level of Corrosion—Low

oxes,	HEAD STYLE	PART NUMBER	ANCHOR DIA. & DRILL BIT SIZE	EFFECTIVE ANCHOR LENGTH* In. (mm)	BOLT DIA./ THREADS PER INCH	Mil EMBED In. (n	MENT	THIC OF MA TO BE F	AX. KNESS TERIAL ASTENED mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CARTON Ibs.
		HN-1614	5/16″	1-1/2 (38.1)	1/4″/20	1-1/4	(31.8)	1/4	(6.4)	100/ 4.0	1000/41
w		HN-3817	3/8″	1-7/8 (47.6)	5/16" /18	1-1/2	(38.1)	3/8	(9.5)	50/ 3.5	500/36
vv		HN-3830		3 (76.2)	5/16" /18	1-1/2	(38.1)	1-1/2	(38.1)	50/ 4.9	400/40
	Π	HN-1222	1/2″	2-1/4 (57.2)	3/8″/16	1-7/8	(47.6)	3/8	(9.5)	25/ 3.3	250/34
	HEX NUT	HN-1230		3 (76.2)	3/8″/16	1-7/8	(47.6)	1-1/8	(28.6)	25/ 4.0	200/33
	Ŧ	HN-1240		4 (101.6)	3/8″/16	1-7/8	(47.6)	2-1/8	(54.0)	25/ 5.3	200/44
		HN-5830	5/8″	3 (76.2)	1/2″/13	2	(50.8)	1	(25.4)	25/ 7.0	150/46
		HN-5842		4-1/4 (108.0)	1/2″/13	2	(50.8)	2-1/4	(57.2)	10/ 3.9	100/41
		HN-3440	3/4″	4 (101.6)	5/8″/11	2-1/4	(57.2)	1-3/4	(44.5)	5/ 3.2	50/33
	HEAD*	FS-3840	3/8″	4 (101.6)	5/16" /18	1-1/2	(38.1)	2-1/2	(63.5)	50/ 5.3	400/44
	SFLAT 1	FS-3850	(head dia722)	5 (127.0)	5/16" /18	1-1/2	(38.1)	3-1/2	(88.9)	50/ 5.6	300/40
	PHILUP SFLAT HEAD*	FS-3860		6 (152.4)	5/16" /18	1-1/2	(38.1)	4-1/2	(114.3)	50/ 8.0	300/48
	TIE WIRE	TW-1614	5/16″	1-1/2 (38.1)	1/4″/20	1-1/2	(38.1)	9/32	(7.1)	100/ 4.9	1000/50

* Phillips flat head uses a standard 80°-82° counter sink.

CTION CHART		
Dynabolt Type 304 Stainless Steel		

SELECTION CHART

Typical Applications— Cladding and Brick Ties Environment—Slight to moderate degree of pollution Level of Corrosion— Medium

	HEAD STYLE	PART NUMBER	ANCHOR DIA. & DRILL BIT SIZE	EFFECTIVE ANCHOR LENGTH* In. (mm)	BOLT DIA./ THREADS PER INCH	MIN. EMBEDMENT In. (mm)	MAX. THICKNESS OF MATERIAL TO BE FASTENED In. (mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CARTON Ibs.
n	NUT	SHN-3817	3/8″	1-7/8 (47.6)	5/16"/18	1-1/2 (38.1)	3/8 (9.5)	50/ 3.5	500/36
	HEX	SHN-1222 SHN-1240	1/2″	2-1/4 (57.2) 4 (101.6)	3/8″ /16 3/8″ /16	1-7/8 (47.6) 1-7/8 (47.6)	3/8 (9.5) 2-1/8 (54.0)	25/ 3.3 25/ 5.3	250/ 34 200/ 44
	PHILLIPS FLAT HEAD*	SFS-3826 SFS-3840	3/8″	2-7/8 (73.0) 4 (101.6)	5/16″/18 5/16″/18	1-1/2 (38.1) 1-1/2 (38.1)	1-3/8 (34.9) 2-1/2 (63.5)	50/ 3.8 50/ 5.3	500/ 40 400/ 44

* Flat head uses a standard $80^\circ - 82^\circ$ counter sink.

For continuous extreme low temperature applications, use stainless steel.

PERFORMANCE TABLES

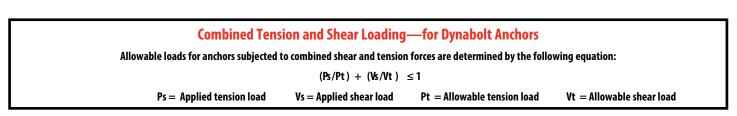
Dynabolt Sleeve Anchors Ultimate Tension and Shear Values in Concrete (Lbs/kN)*

ANCHOR	INSTALLATION	BOLT	MINIMUM	ANCHOR	f′c = 2000 PS	5I (13.8 MPa)	f'c = 3000 P	5I (20.7 MPa)	f'c = 4000 PS	5I (27.6 MPa)
DIA. In. (mm)	TORQUE Ft. Lbs. (Nm)	DIA. In. (mm)	EMBEDMENT DEPTH In. (mm)	TYPE (STEEL)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)
1/4 (6.4)	3.5 (4.7)	3/16 (4.8)	1-1/8 (28.6)		1,200 (5.3)	1,215 (5.4)	1,325 (5.9)	1,215 (5.4)	1,450 (6.4)	1,215 (5.4)
5/16 (7.9)	8 (10.8)	1/4 (6.4)	1-1/4 (31.8)		1,400 (6.2)	2,040 (9.1)	1,920 (8.5)	2,220 (9.9)	2,600 (11.6)	2,400 (10.7)
3/8 (9.5)	14 (19.0)	5/16 (7.9)	1-1/2 (38.1)	Carbon	1,620 (7.2)	2,560 (11.4)	2,240 (10.0)	2,800 (12.5)	3,100 (13.8)	3,040 (13.5)
1/2 (12.7)	20 (27.1)	3/8 (9.5)	1-7/8 (47.6)	or Stainless	2,220 (9.9)	3,250 (14.5)	3,140 (14.0)	4,000 (17.8)	4,400 (19.6)	4,500 (20.0)
5/8 (15.9)	48 (65.1)	1/2 (12.7)	2 (50.8)]	3,080 (13.7)	6,440 (28.6)	4,400 (19.6)	7,240 (32.2)	6,120 (27.2)	8,080 (35.9)
3/4 (19.1)	90 (122.0)	5/8 (15.9)	2-1/4 (57.2)		4,200 (18.7)	10,200 (45.4)	6,060 (27.0)	11,600 (51.6)	8,900 (39.6)	13,100 (58.3)

* For continuous extreme low temperature applications, use stainless steel.

For AN-1405, Ultimate Pullout: 500 lbs. & Ultimate Shear: 1751 lbs. based on 4,000 psi.

* Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values


Dynabolt Sleeve Anchors Ultimate Tension and Shear Values in Lightweight Concrete (Lbs/kN)*

ANCHOR	INSTALLATION	BOLT	MINIMUM	ANCHOR	f' c = 400) PSI (27.6 MPa)	f'c = 6000 PS	51 (41.4 MPa)
DIA. In. (mm)	TORQUE Ft. Lbs. (Nm)	DIA. In. (mm)	EMBEDMENT DEPTH In. (mm)	TYPE (STEEL)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)
1/4 (6.4)	3.5 (4.7)	3/16 (4.8)	1-1/8 (28.6)		870 (3.9)	730 (3.2)	1,066 (4.7)	894 (4.0)
5/16 (7.9)	8 (10.8)	1/4 (6.4)	1-1/4 (31.8)		1,260 (5.6)	1,680 (7.5)	1,440 (6.4)	2,220 (9.9)
3/8 (9.5)	14 (19.0)	5/16 (7.9)	1-1/2 (38.1)	Carbon	1,620 (7.2)	2,300 (10.2)	2,240 (10.0)	2,800 (12.5)
1/2 (12.7)	25 (33.9)	3/8 (9.5)	1-7/8 (47.6)	or Stainless	2,600 (11.6)	2,400 (10.7)	3,160 (14.1)	2,400 (10.7)
5/8 (15.9)	48 (65.1)	1/2 (12.7)	2 (50.8)		3,240 (14.4)	5,600 (24.9)	4,300 (19.1)	7,840 (34.9)
3/4 (19.1)	90 (122.0)	5/8 (15.9)	2-1/4 (57.2)		3,640 (16.2)	8,640 (38.4)	5,800 (25.8)	12,480 (55.5)

Dynabolt Sleeve Anchors Ultimate Tension and Shear Values in Concrete Masonry Units (Lbs/kN)*

ANCHOR	INSTALLATION	BOLT	MINIMUM	ANCHOR		LIGHT	WEIGHT	-		MEDIUM	N WEIGHT	
DIA.	TORQUE	DIA.	EMBEDMENT	TYPE	HOLLOV	HOLLOW CORE GROUT F		(FILLED	HOLLO	W CORE	GROU	T FILLED
ln. (mm)	Ft. Lbs. (Nm)	In. (mm)	DEPTH In. (mm)	(STEEL)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)
1/4 (6.4)	3.5 (4.7)	3/16 (4.8)	1-1/8 (28.6)	Carbon	1,120 (5.0)	1,215 (5.4)	1,120 (5.0)	1,215 (5.4)	1,120 (5.0)	1,215 (5.4)	1,120 (5.0)	1,215 (5.4)
		L		Stainless	640 (2.8)	1,620 (7.2)	640 (2.8)	1,620 (7.2)	640 (2.8)	1,620 (7.2)	640 (2.8)	1,620 (7.2)
3/8 (9.5)	15 (20.3)	5/16 (7.9)	1-1/2 (38.1)	Carbon	1,360 (6.0)	2,560 (11.4)	1,360 (6.0)	2,560 (11.4)	1,360 (6.0)	2,560 (11.4)	1,360 (6.0)	2,560 (11.4)
		1		Stainless	1,160 (5.2)	2,560 (11.4)	1,160 (5.2)	2,560 (11.4)	1,160 (5.2)	2,560 (11.4)	1,160 (5.2)	2,560 (11.4)
1/2 (12.7)	25 (33.9)	3/8 (9.5)	1-7/8 (47.6)	Carbon	N/A	N/A	2,220 (9.9)	3,500 (15.6)	N/A	N/A	2,220 (9.9)	3,500 (15.6)
	1 ,	1	'	Stainless	N/A	N/A	2,100 (9.3)	3,500 (15.6)	N/A	N/A	2,100 (9.3)	3,500 (15.6)
5/8 (15.9)	55 (74.6)	1/2 (12.7)	2 (50.8)	Carbon	N/A	N/A	3,080 (13.7)	6,440 (28.6)	N/A	N/A	3,080 (13.7)	6,440 (28.6)
				Stainless	N/A	N/A	3,080 (13.7)	6,440 (28.6)	N/A	N/A	2,820 (12.5)	6,440 (28.6)
3/4 (19.1)	90 (122.0)	5/8 (15.9)	2-1/2 (63.5)	Carbon	N/A	N/A	4,200 (18.7)	10,200 (45.4)	N/A	N/A	4,200 (18.7)	10,200 (45.4)

Allowable values are based upon a 4 to 1 safety factor. Divide by 4 for allowable load values. The tabulated values are for anchors installed in a minimum of 12 diameters on center and a minimum edge distance of 6 diameters for 100 percent anchor efficiency. Spacing and edge distance may be reduced to 6 diameter spacing and 3 diameter edge distance, provided the values are reduced 50 percent. Linear interpolation may be used for intermediate spacings and edge distances.

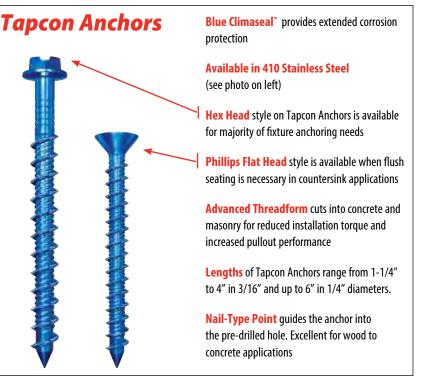
TW Red Head Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

Tapcon® Concrete and Masonry Anchors

DESCRIPTION/SUGGESTED SPECIFICATIONS

Tapcon Anchors —

SPECIFIED FOR ANCHORAGE INTO CONCRETE, BRICK OR BLOCK



The "original masonry" anchor that cuts its own threads into concrete, brick, or block. Maximum performance is achieved because the Tapcon Anchor, the Condrive Installation Tool, and the carbide-tipped Tapcon Drill Bits are designed to work as a system. It is essential to use the Condrive tool and the correct drill bit to assure consistent anchor performance.

ADVANTAGES

- Works in all masonry base materials.
- Fast and easy—3 anchors per minute.
- No hole spotting or inserts required.
- Removable.

- Slotted hex and phillips flat head styles.
- Extended corrosion protection— Blue Climaseal^{*}.
- Available in 410 Stainless Steel.

Tapcon® is a registered trademark of Buildex, a divison of Illinois Tool Works, Inc.

CORROSION RESISTANCE

Kesternich Results (DIN 40018 2.0L)

30 Cycles - 10% or less rust

Salt Spray Results (ASTM B117)

720 Hrs - 10% or less rust

Tapcon[®] Anchors

APPLICATIONS

because it is removable and works well in block and brick.

The picture shows the Condrive 1000 Installation Kit in action. The kit makes for fast and easy change over from drill bit to driver and controls the driving torque to prevent thread stripping and head snapping in hard base materials.

The Tapcon Anchor is especially well

suited for window and door frames

because it performs well in block, is

available in a flat head style, and is

Many horizontal or "wall" applications

are attached with Tapcon Anchor

fast to install.

APPROVAL/LISTINGS

Blue Climaseal™

ICC Evaluation Service, Inc. – ESR-1671 ICC Evaluation Service, Inc. – ESR-2202 Miami-Dade County – NOA #12-0816.06 Florida Building Code

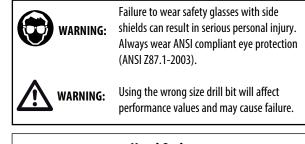
410 Stainless Steel

Miami-Dade County – NOA #12-0816.06 Florida Building Code

For the most current approvals/listings visit: www.itw-redhead.com

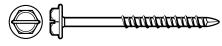
INSTALLATION STEPS

Read installation instructions before using!



If there are any questions concerning proper installation, applications or appropriate use of WARNING: this product, please call our Technical Services Department at 1-800-848-5611. Failure to follow these instructions can result in serious personal injury.

- Select proper fastener diameter / head style / length.
 a) Use selection chart to choose proper length.
- 2. Drill Hole use selection chart to determine drill bit length and depth of hole.
 - a) Choose appropriate drill of Tapcon Anchor.
 - b) Drill hole minimum ¼" deeper than Tapcon Anchor to be embedded.
 Minimum anchor embedment: 1"

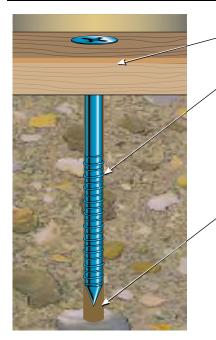

Maximum anchor embedment: 1-3/4"

3. Drive Anchor.



Head Styles

3/16" diameter has a 1/4" slotted hex washer head (HWH) 1/4" diameter has a 5/16" slotted hex washer head (HWH)



3/16" diameter uses a #2 phillips flat head (PFH) 1/4" diameter uses a #3 phillips flat head (PFH)

FEATURES

Fixture Thickness—determine the fixture thickness to be anchored

Anchor Embedment—with a minimum recommended embedment of 1", the correct Tapcon anchor choice can be made. Hole depth must be a minimum 1/4" deeper than the anchor embedment to allow for displaced material

Hole Diameter—proper hole diameter is very important to insure consistent performance and maximum pullout strength. 3/16" anchors require 5/32" diameter bits, and 1/4" anchors require 3/16" diameter bits

SELECTION CHARTS

Tapcon[®] Anchors

Diameter......3/16" and 1/4" Point Type......Nail

Thread Form.....Advanced Threadform Technology™ Finish......Blue Climaseal™

All boxes of Tapcon anchors come packaged with matching carbide-tipped bit. Tapcon is packaged 100 pieces per box and

with Blue Climaseal[™] 500 pieces per master carton except 3205407 and 3203407 (400 in master carton). FIXTURE RECOMMENDED PART NO. PART NO. PART NO. PART NO. STRAIGHT SHANK STRAIGHT SHANK BIT THICKNESS TAPCON LENGTH 3/16" 1/4" 3/16" 1/4″ LENGTH **BITS FOR BITS FOR** INCHES In. (mm) HEX HEAD HEX HEAD FLAT HEAD FLAT HEAD In. (mm) 3/16" TAPCON 1/4" TAPCON PART NO. PART NO. 0'' - 1/4''1-1/4 (31.8) 3139407 3153407 3169407 3183407 3-1/2 (88.9) 3098910 _ 1/4" - 3/4" 1-3/4 (44.5) 3141407 3155407 3171407 3185407 3-1/2 (88.9) 3098910 3/4" - 1-1/4" 2-1/4 (57.2) 3143407 3157407 3173407 3187407 4-1/2 (114.3) 3096910 3099910 1-1/4 " - 1-3/4" 2-3/4 (69.9) 3145407 3159407 3175407 3189407 4-1/2 (114.3)3096910 3099910 1-3/4" - 2-1/4" 3-1/4 (82.6) 3147407 3161407 3177407 5-1/2 (139.7) 3097910 3100910 3191407 2-1/4" - 2-3/4" 3-3/4 (95.3) 3149407 3163407 3179407 3193407 5-1/2 (139.7) 3097910 3100910 2-1/2" - 3" 4 (101.6) N/A 3165407 3181407 3195407 5-1/2 (139.7) 3097910 3100910 3-1/2" - 4" 5 (127.0) N/A 3167407 N/A 3197407 6-1/2 (165.1) N/A -4-1/2" - 5" 3205407 N/A 3203407 3206910 6 (152.4) N/A 7-1/2 (190.5) N/A

Additional Tapcon bits are available 10 per tube.

Tapcon[®] 410 SS Anchor

FIXTURE THICKNESS INCHES	RECOMMENDED TAPCON LENGTH In. (mm)	PART NO. 1/4" HEX HEAD	PART NO. 3/16" Flat head	PART NO. 1/4" Flat head	BIT LENGTH In. (mm)	STRAIGHT SHANK BITS FOR 3/16" TAPCON PART NO.	STRAIGHT SHANK Bits for 1/4" Tapcon Part No.
0" - 1/4"	1-1/4 (31.8)	3367907	3434907	3373907	3-1/2 (88.9)	3095910	3098910
1/4" - 3/4"	1-3/4 (44.5)	3368907	3418907	3374907	3-1/2 (88.9)	3095910	3098910
3/4" - 1-1/4"	2-1/4 (57.2)	3369907	3419907	3375907	4-1/2 (114.3)	3096910	3099910
1-1/4 - 1-3/4"	2-3/4 (69.9)	3370907	3420907	3376907	4-1/2 (114.3)	3096910	3099910
1-3/4" - 2-1/4"	3-1/4 (82.6)	3371907	-	3377907	5-1/2 (139.7)	3097910	3100910
2-1/4" - 2-3/4"	3-3/4 (95.3)	3372907	3422907	3378907	5-1/2 (139.7)	3097910	3100910
2-1/2" - 3"	4 (101.6)	3459907	N/A	N/A	5-1/2 (139.7)	N/A	3100910
3-1/2" - 4"	5 (127.0)	3460907	N/A	N/A	6-1/2 (165.1)	N/A	3102910
4-1/2" - 5"	6 (152.4)	N/A	N/A	N/A	7-1/2 (190.5)	N/A	3461907

PART NUMBER DESCRIPTION 3311910 7" (SDS Rotohammer Bits for use with 3/16" Tapcon) 7901060 5" (SDS Rotohammer Bits for use with 1/4" Tapcon) 3101910 7" (SDS Rotohammer Bits for use with 1/4" Tapcon)

All SDS bits are sold individually.

PERFORMANCE TABLE

Tapcon®

Anchors Ultimate Tension and Shear Values (Lbs/kN) in Concrete

ANCHOR	MIN. DEPTH OF	f′c = 2000 P	SI (13.8 MPa)	f'c = 3000 P	SI (20.7 MPa)	f'c = 4000 P	SI (27.6 MPa)	f′c = 5000 P	SI (34.5 MPa)	
DIA. In. (mm)	EMBEDMENT In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR TENSION Lbs. (kN) Lbs. (kN)		SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	
3/16 (4.8)	1 (25.4)	600 (2.7)	720 (3.2)	625 (2.8)	720 (3.2)	650 (2.9)	720 (3.2)	800 (3.6)	860 (3.8)	
	1-1/4 (31.8)	845 (3.7)	720 (3.2)	858 (3.8)	720 (3.2)	870 (3.9)	720 (3.2)	1,010 (4.5)	860 (3.8)	
	1-1/2 (38.1)	1,090 (4.8)	860 (3.8)	1,090 (4.8)	860 (3.8)	1,090 (4.8)	860 (3.8)	1,220 (5.4)	860 (3.8)	
	1-3/4 (44.5)	1,450 (6.5)	870 (3.9)	1,455 (6.5)	870 (3.9)	1,460 (6.5)	990 (4.4)	1,730 (7.7)	990 (4.4)	
1/4 (6.4)	1 (25.4)	750 (3.3)	900 (4.0)	775 (3.4)	900 (4.0)	800 (3.6)	1,360 (6.1)	950 (4.2)	1,440 (6.4)	
	1-1/4 (31.8)	1,050 (4.7)	900 (4.0)	1,160 (5.2)	900 (4.0)	1,270 (5.6)	1,360 (6.1)	1,515 (6.7)	1,440 (6.4)	
	1-1/2 (38.1)	1,380 (6.1)	1,200 (5.3)	1,600 (7.2)	1,200 (5.3)	1,820 (8.1)	1,380 (6.1)	2,170 (9.7)	1,670 (7.4)	
	1-3/4 (44.5)	2,020 (9.0)	1,670 (7.4)	2,200 (9.8)	1,670 (7.4)	2,380 (10.6)	1,670 (7.4)	2,770 (12.3)	1,670 (7.4)	

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity.

PERFORMANCE TABLES

Ultimate Tension and Shear Values(Lbs/kN) in Hollow Block

ſ	ANCHOR	ANCHOR	LIGHTWEI	GHT BLOCK	MEDIUM WEIGHT BLOCK			
	DIA. In. (mm)	EMBEDMENT In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)		
	3/16 (4.8)	1 (25.4)	220 (1.0)	400 (1.8)	340 (1.5)	730 (3.2)		
	1/4 (6.4)	1 (25.4)	250 (1.1)	620 (2.8)	500 (2.2)	1,000 (4.4)		

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity.

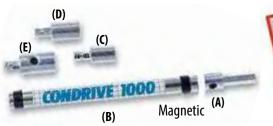
NOTE: 3/16" Tapcon requires 5/32" bit, 1/4" Tapcon requires 3/16" bit.

Tapcon[®] Anchors Allowable Edge and Spacing Distances

PARAMETER	ANCHOR	1	NORMAL WEIGHT CONCRETE			CONCRETE MASONRY UNITS (CMU)				
	DIA. In. (mm)	FULL CAPACITY (Critical Distance Inches)	REDUCED CAPACITY (Minimal Distance Inches)	LOAD REDUCTION FACTOR	FULL CAPACITY (Critical Distance Inches)	REDUCED CAPACITY (Minimal Distance Inches)	LOAD REDUCTION Factor			
Spacing Between	3/16	3	1-1/2	0.73	3	1-1/2	1.00			
Anchors - Tension	1/4	4	2	0.66	4	2	0.84			
Spacing Between	3/16	3	1-1/2	0.83	3	1-1/2	1.00			
Anchors - Shear	1/4	4	2	0.82	4	2	0.81			
Edge Distance -	3/16	1-7/8	1	0.83	4	2	0.91			
Tension	1/4	2-1/2	1-1/4	0.82	4	2	0.88			
Edge Distance	3/16	2-1/4	1-1/8	0.70	4	2	0.93			
-Shear	1/4	3	1-1/2	0.59	4	2	0.80			

For SI: 1 inch = 25.4 mm

Tapcon[®] Condrive 1000 Tool Kit


DESCRIPTION/SUGGESTED SPECIFICATIONS

Condrive 1000 Installation Tool— SPECIFIED FOR ANCHORAGE INTO CONCRETE, BRICK OR BLOCK

The key to Tapcon's fast and easy installation is the multi-purpose Condrive Installation Tool. The drive sleeve, along with the hex head and phillips sockets provide the installer with the flexibility necessary for the complete variety of Tapcon applications (tool does not include drill bit).

Condrive[®] 1000 - A multi-purpose tool designed for installation of Tapcon hex head and Phillips flat head anchors up to 3-3/4" long. If driving hex head Tapcon, driver will automatically disengage. The Condrive 1000 has a reusable plastic case.

Condrive Tools are designed to specifically install Tapcon Anchors and to fit standard hammer drills.

Part No. C1000 (Does not include drill bit)

APPLICATIONS

The picture shows the Condrive 1000 Installation Kit in action. The kit makes for fast and easy change over from drill bit to driver and controls the driving torque to prevent thread stripping and head snapping in hard base materials.

ADVANTAGES

(E) 7901010

Fast change from drilling to driving

Phillips Socket

- Eliminates need to change out chucks and bits
- Eliminates need for two tools
- Special nut driver is recessed for torque control to reduce head breakage

Condri	ive 1000 Spare Pa	rts
PART NO.	DESCRIPTION	QTY/WT
(A) 7901001	Drill Adapter	1/.06
(B) 7901002	Sleeve	1/.01
(C) 7901006	3/16" Socket	1/.04
(D) 7901007	1/4″ Socket	1/05

1/.44

Tapcon[®] Maxi-Set Anchors

White UltraShield

UltraShield

DESCRIPTION/SUGGESTED SPECIFICATIONS

FOR TAPCON APPLICATIONS THAT REQUIRE MORE ANCHOR BEARING SURFACE.

ADVANTAGES

- Same reliable performance and speed of installation as regular Tapcon.
- Large 5/8" diameter flange provides more bearing surface and increases pullover resistance. High 5/16" hex head adds driving stability.
- Compatible with DrivTru[™] socket system. Improves installation. Protects paint finish.
- UltraShield[™] and White UltraShield[™] long-life finish deliver excellent corrosion resistance.

CORROSION RESISTANCE

Salt Spray Test (ASTM B117)

UltraShield 1100 Hrs 10% or less rust

White UltraShield 1500 Hrs NO RED RUST

APPROVAL/LISTINGS

ICC Evaluation Service, Inc. – #ESR-1671 Miami-Dade County – NOA #12-0816.06

For the most current approvals/listings visit: www.itw-redhead.com

INSTALLATION STEPS

Read installation instructions before using!

If there are any questions concerning proper installation, applications or appropriate use of this product, please call our Technical Services Department at 1-800-848-5611. Failure to follow these instructions can result in serious personal injury.

- Select proper fastener diameter / head style / length.
 a) Use selection chart to choose proper length.
- 2. Drill Hole use selection chart to determine drill bit length and depth of hole.
 - a) Choose appropriate drill of Tapcon Anchor.
 - b) Drill hole minimum ¼" deeper than Tapcon Anchor to be embedded. Minimum anchor embedment: 1" Maximum anchor embedment: 1-3/4"
- 3. Drive anchor using 5/16" socket.

APPLICATIONS

and decorative Screened porch and pool enclosures.

Shutters - protective

Various sheet metal flashings.

Decorative wrought iron.

Wood nailers and plywood attachment.

Failure to wear safety glasses with side shields can result in serious personal injury. Always wear ANSI compliant eye protection (ANSI Z87.1-2003).

Using the wrong size drill bit will affect performance values and may cause failure.

Tapcon[®] Maxi-Set Anchors

SELECTION CHART

Tapcon[®] **Maxi-Set Anchors**

Diameter.....1/4" Point Type.....Nail

Thread Form..... Advanced Threadform Technology™ Finish.....UltraShield[™] or *White UltraShield[™] Head Style......5/16" across flats hex with 5/8" diameter flange.

RECOMMENDED TAPCON LENGTH In. (mm)	PART NO. 1/4" HEX HEAD	FINISH	BIT LENGTH In. (mm)	STRAIGHT SHANK BITS For 1/4" Tapcon Part No.
1-3/4 (44.5)	3294000	Ultra Shield	3-1/2 (88.9)	3098910
1-3/4 (44.5)	3383100	White Ultra Shield	3-1/2 (88.9)	3098910
2-1/4 (57.2)	3384100	White Ultra Shield	4-1/2 (114.3)	3099910
3-1/4 (82.6)	3409100	White Ultra Shield	5-1/2 (139.7)	3100910

	I apcon SDS Bits
PART NUMBER	DESCRIPTION
3311910	7" (SDS Rotohammer Bits for use with 3/16" Tapcon)
7901060	5" (SDS Rotohammer Bits for use with 1/4" Tapcon)
3101910	7" (SDS Rotohammer Bits for use with 1/4" Tapcon)

NOTE: 2-3/4" and 3-1/4" lengths are special orders. Contact customer service for lead-times.

Maxi-Sets are packed 1,000 pieces per master carton except 3409100 is packed 750 pieces.

PERFORMANCE TABLES

		CON [®] nchors	Ultimate	Tension d	and Shea	r Values	(Lbs/kN)	in Concre	ete
ANCHOR	MIN. DEPTH OF	f'c = 2000	PSI (13.8 MPa)	f'c = 3000 P	SI (20.7 MPa)	f'c = 4000 P	SI (27.6 MPa)	f′c = 5000 P	SI (34.5 MPa)
DIA. In. (mm)	EMBEDMENT In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)
1/4 (6.4)	1 (25.4)	750 (3.3)	900 (4.0)	775 (3.4)	900 (4.0)	800 (3.6)	1,360 (6.1)	950 (4.2)	1,440 (6.4)
	1-1/4 (31.8)	1,050 (4.7)	900 (4.0)	1,160 (5.2)	900 (4.0)	1,270 (5.6)	1,360 (6.1)	1,515 (6.7)	1,440 (6.4)
	1-1/2 (38.1)	1,380 (6.1)	1,200 (5.3)	1,600 (7.2)	1,200 (5.3)	1,820 (8.1)	1,380 (6.1)	2,170 (9.7)	1,670 (7.4)
	1-3/4 (44.5)	2,020 (9.0)	1,670 (7.4)	2,200 (9.8)	1,670 (7.4)	2,380 (10.6)	1,670 (7.4)	2,770 (12.3)	1,670 (7.4)

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity. Divide by 4

Ultimate Tension and Shear Values Tapcon[®] Anchors (Lbs/kN) in Hollow Block

A	ANCHOR	ANCHOR	LIGHTWEI	GHT BLOCK	MEDIUM W	EIGHT BLOCK	
h	DIA. n. (mm)	EMBEDMENT In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	
	1/4 (6.4)	1 (25.4)	250 (1.1)	620 (2.8)	500 (2.2)	1,000 (4.4)	

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity. Divide by 4.

NOTE: 3/16" Tapcon requires 5/32" bit, 1/4" Tapcon requires 3/16" bit.

Tapcon[®]Anchors Allowable Edge and Spacing Distances

PARAMETER	ANCHOR	N	IORMAL WEIGHT CONCRE	TE	CONCRETE MASONRY UNITS (CMU)				
	DIA. In. (mm)	FULL CAPACITY (Critical Distance Inches)	REDUCED CAPACITY (Minimal Distance Inches)	LOAD REDUCTION FACTOR	FULL CAPACITY (Critical Distance Inches)	REDUCED CAPACITY (Minimal Distance Inches)	LOAD REDUCTION FACTOR		
Spacing Between Anchors - Tension	1/4	4	2	0.66	4	2	0.84		
Spacing Between Anchors - Shear	1/4	4	2	0.82	4	2	0.81		
Edge Distance - Tension	1/4	2-1/2	1-1/4	0.82	4	2	0.88		
Edge Distance -Shear	1/4	3	1-1/2	0.59	4	2	0.80		

For SI: 1 inch = 25.4 mm

IT W **Red Head**

Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at www.itwredhead.com

Tapcon[®] SCOTS Anchors

DESCRIPTION/SUGGESTED SPECIFICATIONS

PREMIUM CONCRETE ANCHOR THAT COMBINES THE CORROSION PROTECTION **OF STAINLESS STEEL WITH THE PERFORMANCE OF TAPCON ANCHORS.**

ADVANTAGES

- 300 Series Stainless Steel head and Carbon Steel body.
- Integral washer design provides more bearing surface.
- Rubber EPDM sealing washer "locks-out" moisture from building interior.
- Head paint available in white or bronze (extra charge).
- Delivers the same holding performance as Tapcon anchors with Blue Climaseal[™].
- Reduces replacement of "weathered" fasteners.

ORROSION RESIST ANCE

Kesternich Results (DIN 50018, 2.0L)

30 Cycles - 10% or less red rust Climaseal™

APPROVAL/LISTINGS

ICC Evaluation Service, Inc. - ESR-1671

Miami-Dade County - #12-0816.06

For the most current approvals/listings visit: www.itw-redhead.com

INSTALLATION STEPS

Read installation instructions before using!

If there are any questions concerning proper installation, applications or appropriate use of this product, please call our Technical Services Department at 1-800-848-5611. Failure to follow these instructions can result in serious personal injury.

- 1. Select proper fastener diameter / head style / length. a) Use selection chart to choose proper length.
- 2. Drill Hole use selection chart to determine drill bit length and depth of hole.
 - a) Choose appropriate drill of Tapcon Anchor.
 - b) Drill hole minimum 1/4" deeper than Tapcon Anchor to be embedded. Minimum anchor embedment: 1" Maximum anchor embedment: 1-3/4"
- 3. Drive anchor using 5/16" socket.

Aluminum fixtures

- Railings
- Metal roofing Flexible flashings

Failure to wear safety glasses with side shields can result in serious personal injury. Always wear ANSI compliant eye protection (ANSI Z87.1-2003).

Using the wrong size drill bit will affect performance values and may cause failure.

Shutters - protective

PLICATIONS

😓 RED HEAD°

Tapcon[®] SCOTS Anchors

SELECTION CHART

Diameter.....1/4" Point Type.....Nail

Thread Form..... Advanced Threadform Technology™ Finish.....Silver Climaseal™ Head Style......5/16" HWH (300 Series Stainless)

JCUIJA	IICIIVIS			
RECOMMENDED TAPCON LENGTH In. (mm)	PART NO. 1/4" HEX HEAD	BIT LENGTH In. (mm)	STRAIGHT SHANK BITS FOR 1/4" TAPCON PART NO.	
1-3/4 (44.5)	3358407	3-1/2 (88.9)	3098910	

NOTE: 2-3/4" and 3-1/4" lengths are special orders. Contact customer service for lead-times.

SCOTS are packed 1,000 pieces per master, 100 pieces per inner.

	T apcon SDS Bits
PART NUMBER	DESCRIPTION
3311910	7" (SDS Rotohammer Bits for use with 3/16" Tapcon)
7901060	5" (SDS Rotohammer Bits for use with 1/4" Tapcon)
3101910	7" (SDS Rotohammer Bits for use with 1/4" Tapcon)

PERFORMANCE TABLES

		CON [®] nchors	Ultimate	Tension (and Shea	r Values	(Lbs/kN)	in Concre	ete
ANCHOR	MIN. DEPTH OF	f′c = 200	0 PSI (13.8 MPa)	f'c = 3000 F	SI (20.7 MPa)	f′c = 4000 F	PSI (27.6 MPa)	f′c = 5000 P	PSI (34.5 MPa)
DIA. In. (mm)	EMBEDMENT) In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)
1/4 (6.4)	1 (25.4)	750 (3.3)	900 (4.0)	775 (3.4)	900 (4.0)	800 (3.6)	1,360 (6.1)	950 (4.2)	1,440 (6.4)
	1-1/4 (31.8)	1,050 (4.7)	900 (4.0)	1,160 (5.2)	900 (4.0)	1,270 (5.6)	1,360 (6.1)	1,515 (6.7)	1,440 (6.4)
	1-1/2 (38.1)	1,380 (6.1)	1,200 (5.3)	1,600 (7.2)	1,200 (5.3)	1,820 (8.1)	1,380 (6.1)	2,170 (9.7)	1,670 (7.4)
	1-3/4 (44.5)	2,020 (9.0)	1,670 (7.4)	2,200 (9.8)	1,670 (7.4)	2,380 (10.6)	1,670 (7.4)	2,770 (12.3)	1,670 (7.4)

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity.

Ultimate Tension and Shear Values (Lbs/ Tapcon[®] Anchors kN) in Hollow Concrete Masonry Units

Γ	ANCHOR	ANCHOR	LIGHTWEI	GHT BLOCK	MEDIUM W	EIGHT BLOCK	
	DIA. In. (mm)	EMBEDMENT In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	
	1/4 (6.4)	1 (25.4)	250 (1.1)	620 (2.8)	500 (2.2)	1,000 (4.4)	

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity.

NOTE: 3/16" Tapcon requires 5/32" bit, 1/4" Tapcon requires 3/16" bit.

Tapcon[®]Anchors Allowable Edge and Spacing Distances

PARAMETER	ANCHOR	NORMAL WEIGHT CONCRETE			CONCRETE MASONRY UNITS (CMU)				
	DIA. In. (mm)	FULL CAPACITY (Critical Distance Inches)	REDUCED CAPACITY (Minimal Distance Inches)	LOAD REDUCTION FACTOR	FULL CAPACITY (Critical Distance Inches)	REDUCED CAPACITY (Minimal Distance Inches)	LOAD REDUCTION FACTOR		
Spacing Between Anchors - Tension	1/4	4	2	0.66	4	2	0.84		
Spacing Between Anchors - Shear	1/4	4	2	0.82	4	2	0.81		
Edge Distance - Tension	1/4	2-1/2	1-1/4	0.82	4	2	0.88		
Edge Distance -Shear	1/4	3	1-1/2	0.59	4	2	0.80		

For SI: 1 inch = 25.4 mm

Tapcon[®] XL Anchors

UltraShield

White UltraShield

APPLICATIONS

Shutters - protective and decorative

Screened porch and pool enclosures. Railings

Mounted electrical equipment

Sill plates

😓 RED HEAD"

DESCRIPTION/SUGGESTED SPECIFICATIONS

EXTRA LARGE TAPCON FOR EXTRA LARGE CHALLENGES!

ADVANTAGES

- Internal TORX® T-40 drive assures easy installation.
- High button head resists cam-out during installation.
 - Corrosion protection of UltraShield[™] and White UltraShield[™] to combat aggressive environments.
- Available in silver or white to complement standard fixtures.
- Delivers over 3,000 lbs. holding power in concrete.
- Alternative to sleeve anchors.
- 1/4" SDS Tapcon drill bit for added convenience.
- Condrive[®] XL with MegaGrip[™] bit holder for rapid one-tool installation.

CORROSION RESISTANCE

Salt Spray Test (ASTM B117)

UltraShield 1100 Hrs 10% or less rust White UltraShield 1500 Hrs no red rust

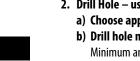
INSTALLATION STEPS

Read installation instructions before using!

If there are any questions concerning proper installation, applications or appropriate use of this product, please call our Technical Services Department at 1-800-848-5611. Failure to follow these instructions can result in serious personal injury.

- 1. Select proper fastener diameter / head style / length. a) Use selection chart to choose proper length.
- Drill Hole use selection chart to determine drill bit length and depth of hole.
 a) Choose appropriate drill of Tapcon Anchor.
 - **b) Drill hole minimum 1/4" deeper than Tapcon Anchor to be embedded.** Minimum anchor embedment: 1"

Maximum anchor embedment: 1-3/4"


- Insert the adjustable MegaGrip bit tip holder in the small opening of sleeve. Slide the open end of the Condrive XL Installation Tool sleeve over the drill bit and snap in place.
- 4. Drive anchor using MegaGrip adjustable magnetic bit holder with TORX T-40 bit tip

MegaGrip PART#	DESCRIPTION
3400910	MegaGrip Bit Holder

Failure to wear safety glasses with side shields can result in serious personal injury. Always wear ANSI compliant eye protection (ANSI Z87.1-2003).

Using the wrong size drill bit will affect performance values and may cause failure.

Tapcon[®] XL Anchors

SELECTION CHART

Tapcon ° XL Anchors		Diameter5/16" Thread Form Reverse Hi-Lo® Point TypeNail FinishUltraShield™ or *White Head StyleHigh button with TORX T-40 Drive		
RECOMMENDED TAPCON LENGTH In. (mm)	PART NO.	FINISH	BIT LENGTH In. (mm)	1/4" DRILL BITS FOR TAPCON XL PART NO.
2-1/4 (57.2)	3395902	Ultra Shield	6-3/4" SDS drill bit with hex	3394910

XLs are packed 100 pieces per master carton.

PART NO.	DESCRIPTION	CARTON QTY
3401910	Condrive® XL Installation Tool with MegaGrip™ Bit Holder with TORX® T-40 Bit Tip	10 per master carton
3400910	MegaGrip™ Magnetized Bit Holder with TORX T-40 Bit Tip	10 per bag
3394910	1/4" x 6-3/4" SDS Tapcon Drill Bit with Hex	1 piece per tube

Tapcon XL Anchors must be installed using all Red Head system components (Tapcon XL Anchors, Condrive XL Installation Tool and Tapcon Drill Bits) in order to qualify for ITW Red Head system support.

PERFORMANCE TABLES

	Tapcon [®] XL Anchors						
ANCHOR	MIN. DEPTH OF	EDGE DISTANCE f'c = 3000 PSI (20.7 MP		SI (20.7 MPa)			
DIA. In. (mm)	EMBEDMENT In. (mm)		TENSION Lbs. (kN)	SHEAR Lbs. (kN)			
5/16 (7.9)	1-1/4 (31.8)	1-9/16 (39.7)	1,050 (4.7)	1,330 (5.9)			
		2-3/16 (55.6)	1,205 (5.4)	1,725 (7.7)			
	1-3/4 (44.5)	1-9/16 (39.7)	2,020 (9.0)	1,530 (6.8)			
		2-3/16 (55.6)	2,250 (10.0)	2,505 (11.1)			
	2-1/4 (57.2)	1-9/16 (39.7)	2,850 (12.7)	1,955 (8.9)			
		2-3/16 (55.6)	3,120 (13.9)	3,250 (14.4)			

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity. Divide by 4.

1. Pilot hole diameter shall be 0.263" and drilled 1/4" longer than the necessary embedment.

2. Allowable loads are based ultimate test load divide by 4.

3. Recommended center to center distance of 3-3/4" is required for 100% efficiency and 1-7/8" for 50% efficiency.

4. Embedment is through 1-1/4" face shell of hollow block.

Tapcon® **Ultimate Tension & Shear Values in Concrete Masonry Units** XL Anchors **HOLLOW CORE¹ GROUT-FILLED**² ANCHOR MINIMUM EDGE DIA. **DEPTH OF** TENSION TENSION DISTANCE SHEAR SHEAR EMBEDMENT In. (mm) (Inches) Lbs. (kN) Lbs. (kN) Lbs. (kN) Lbs. (kN) In. (mm) 2,280 5/16 (7.9) 1-1/4 (31.8) 4 1,045 (4.6) 2,280 (10.1) 1,045 (4.6) (10.1) 1-3/4 (44.5) 4 NOT RECOMMENDED NOT RECOMMENDED 1,950 (8.7) 2,825 (12.6)

NOT RECOMMENDED

NOT RECOMMENDED

3,770

(16.8)

3,140

(14.0)

4 Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity.

1 CMU = 1,600 PSI minimum compressive strength.

2-1/4

2 CMU = 1,600 PSI minimum compressive strength with 2,000 PSI grout.

(57.2)

Tapcon[®] Storm Guard Anchors

DESCRIPTION/SUGGESTED SPECIFICATIONS

DIRECT MOUNT PERMANENT ANCHORS FOR QUICK AND EASY INSTALLATIONS OF METAL AND PLYWOOD PANELS TO CONCRETE AND BLOCK.

ADVANTAGES

- White UltraShield[™] for corrosion protection in coastal environments.
- 1/4-20 x 7/8" external thread above collar.
- No caulking required.
- Threaded chamfered safety collar prevents overdriving.
- 3/16" Hex Drive.
- Use with ANSI standard 3/16" carbide-tipped drill bit. (bit not included)

CORROSION RESISTANCE

Salt Spray Test (ASTM B117)

White UltraShield 1500 Hrs no red rust

APPROVAL/LISTINGS

Miami-Dade County – #11-0616.04

For the most current approvals/listings visit: www.itw-redhead.com

INSTALLATION STEPS

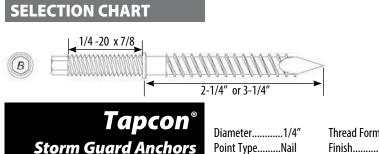
Read installation instructions before using!

DO NOT BEND DRILL BIT. DO NOT FORCE THE DRILL BIT INTO BASE MATERIAL.

3/16" Nut Driver Installation Tool (Part # 3426910)

Failure to wear safety glasses with side shields can result in serious personal injury. Always wear ANSI compliant eye protection (ANSI Z87.1-2003).

Using the wrong size drill bit will affect performance values and may cause failure.


APPLICATIONS

Direct mount permanent anchors for quick and easy installations for metal and plywood panels to wood, hollow block and concrete.

Tapcon[®] Storm Guard Anchors

Thread Form..... Original Notched Hi-Lo™ Finish......UltraShield™

PART NO.	DESCRIPTION	COATING	BOX QTY
3424100	1/4″ dia. x 2-1/4″	White UltraShield	1,000
3426910	3/16" Nut Driver		1

PERFORMANCE TABLES

Ta Storm Guard	DCON [®] Anchors Ultimate	e Tension and She	ear Values (Lbs/kl	I) in Concrete
ANCHOR DIA. In. (mm)	MIN. DEPTH OF EMBEDMENT In. (mm)	EDGE DISTANCE	f'c = 3000 PS TENSION	SHEAR
1/4 (6.4)	1 (25.4)	1-1/4 (31.8)	Lbs. (kN) 1,230 (5.5)	Lbs. (kN) 1,339 (6.0)
	1 (25.4)	2-1/2 (63.5)	1,701 (7.6)	2,333 (10.4)
	1-3/4 (44.5)	1-1/4 (31.8)	2,704 (12.0)	1,375 (6.1)
	1-3/4 (44.5)	2-1/2 (63.5)	2,844 (12.6)	2,618 (11.6)

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity. Divide by 4.

Tapcon® Ultimate Tension and Shear Values (Lbs/ kN) in Hollow Concrete Masonry Units ANCHOR MIN. DEPTH OF EDGE DISTANCE f'c = 1500 PSI (10.4 MPa)

DIA. In. (mm)	EMBEDMENT In. (mm)		TENSION SHEA Lbs. (kN) Lbs. (k	
1/4 (6.4)	1-1/4 (31.8)	1-1/4 (31.8)	1,955 (8.7)	536 (2.4)
	1-1/4 (31.8)	2-1/2 (63.5)	1,940 (8.6)	1,088 (4.8)

Storm	° Tapcon Guard Anchors		ension and Sl n Grout-Filled	
ANCHOR DIA.	MIN. DEPTH OF EMBEDMENT	EDGE DISTANCE		LED (CMU) SI (13.8 MPa)
In. (mm)	In. (mm)		TENSION Lbs. (kN)	SHEAR Lbs. (kN)
1/4 (6.4)	1-3/4 (44.5)	1-1/4 (31.8)	3,335 (14.8)	1,207 (5.4)
	1-3/4 (44.5)	2-1/2 (63.5)	3,779 (16.8)	2,061 (9.2)

TW Red Head Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

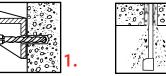
Hammer-Set[®] Anchors

> Nail-Drive Anchors

SPECIFIED FOR ANCHORAGE INTO CONCRETE

Hammer-Set **Nail-Drive** Anchor

The Hammer-Set one-piece zinc plated steel anchor consists of an expansion body and expander drive pin. Anchors meet or exceed GSA specification A-A-1925A Type 1. (Formerly GSA: FF-S-325 Group V, Type 2, Class 3)


ADVANTAGES

- Fast, easy installation
- Works in concrete, block and brick
- Install through material to be fastened
- Low profile mushroom head style

APPROVALS/LISTINGS

Meets or exceeds GSA specification A-A-1925A Type 1 (Formerly GSA: FF-S-325 Group V, Type 2, Class 3)

NSTALLATION STEPS

- Drill proper size hole through material to be fastened into base material. (See Chart for bit size)
- 2. Clean hole.
- 3. Insert Hammer-Set into hole until head of anchor body is flush with material to be fastened. Tap the nail until flush with head of anchor. Ensure minimum embedment is 1/4" deeper than anchor embedment. Be sure head is firmly against fixture
- Anchor is now set. ** NOT RECOMMENDED FOR OVERHEAD **

SELECTION CHART

Hammer-Set

PART NUMBER	DESCRIPTION In. (mm)	DRILL SIZE In. (mm)	MAX. FIXTURE THICKNESS In. (mm)	MIN. EMBEDMENT In. (mm)	MIN. HOLE DEPTH In. (mm)	QTY/WT PER BOX Ibs.	QTY/WT PER MASTER CTN - Ibs.
HS-1607	3/16 x 7/8 (4.8 x 22.2)	3/16 (4.8)	1/4 (6.4)	5/8 (15.9)	1-1/8 (28.6)	100/ 2.0	1000/20
HS-1406	1/4 x 3/4 (6.4 x 19.1)	1/4 (6.4)	1/8 (3.2)	5/8 (15.9)	1 (25.4)	100/ 2.2	1000/22
HS-1410	1/4 x 1 (6.4 x 25.4)	1/4 (6.4)	1/4 (6.4)	3/4 (19.1)	1-1/4 (31.8)	100/ 2.4	1000/24
HS-1412	1/4 x 1-1/4 (6.4 x 31.8)	1/4 (6.4)	1/2 (12.7)	3/4 (19.1)	1-1/2 (38.1)	100/ 2.6	1000/26
HS-1414	1/4 x 1-1/2 (6.4 x 38.1)	1/4 (6.4)	3/4 (19.1)	3/4 (19.1)	1-3/4 (44.5)	100/ 2.8	1000/28
HS-1420	1/4 x 2 (6.4 x 50.8)	1/4 (6.4)	1-1/4 (31.8)	3/4 (19.1)	2-1/4 (57.2)	100/3.5	1000/35

PERFORMANCE TABLE

Ultimate Tension and Shear Hammer-Set Values in Concrete (Lbs/kN)

ANCHOR DIA.	MIN. DEPTH OF EMBEDMENT	4000 PSI (27.6 MPa)			
In. (mm)	In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)		
3/16" (4.8)	5/8" (15.9)	500 (2.2)	450 (2.0)		
1/4" (6.4)	5/8″ (15.9)	700 (3.1)	700 (3.1)		
1/4″ (6.4)	3/4" (19.1)	800 (3.5)	800 (3.5)		
1/4″ (6.4)	1″ (25.4)	950 (4.2)	800 (3.5)		
1/4″ (6.4)	1-1/4" (31.8)	1,100 (4.9)	1,100 (4.9)		

APPLICATIONS

* For overhead applications refer to page 79 for **Redi-Drive information** and performance data

NOT FOR USE IN OVERHEAD APPLICATIONS*

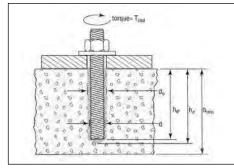
- Electrical boxes
- Conduit clips
- Drywall track
- Roof flashing

*For spacing and edge distance data please refer to the Tapcon data tables

Safe working loads for single installations under static loading conditions should not exceed 25% of the ultimate capacity. Divide ultimate values by 4.

ITW **Red Head**

Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at www.itwredhead.con


APPENDIX A: Strength Design Performance Values

SPECIFICATIONS AND DETAILS FOR INSTALLATION OF ANCHORS IN CONCRETE WITH

(hovo stavistis	Cumhal	11			Threaded Rod Diameter (d)				
Characteristic	Symbol	Units	3/8″	1/2″	5/8″	3/4″	7/8″	1″	1-1/4″
Nominal carbide bit diameter	d ₀	in.	7/16	9/16	3/4	7/8	1	1-1/8	1-3/8
Anchor embedment depth – minimum	h ef, min	in.	1-5/8	2	2-1/2	3-1/2	3-1/2	4	5
Anchor embedment depth – maximum	h ef, max	in.	3-3/8	4-1/2	5-5/8	6-3/4	7-7/8	9	11-1/4
Minimum spacing	s _{min}	in.	15/16	1	2-1/2	6	3-1/2	4	5
Minimum edge distance	c _{min}	in.	15/16	1	2-1/2	6	3-1/2	4	5
Minimum concrete thickness	h _{min}	in.	h _{ef} +	1-1/4			$h_{ef} + 2d_0$		
Maximum tightening torque for pretension clamping	T inst	ft lb	9	16	47	90	145	170	370

For SI: 1 inch= 25.4mm, 1 lbf = 4.45N, 1ft-lbf = 1.356N-m, 1psi = .006895MPa

ANCHOR INSTALLATION

BRUSH SPECIFICATIONS

Brush color	Part #	(d) Anchor diameter (in.)	Minimum brush diameter (in.)
Grey	SB038	3/8	0.563
Brown	SB012	1/2	0.675
Green	SB058	5/8	0.900
Yellow	SB034	3/4	1.125
Red	SB078	7/8	1.350
Purple	SB010	1	1.463
Blue	SB125	1-1/4	1.575

For SI: 1 inch= 25.4mm ◆ Available with lead time.

WORKING TIMES AND CURE TIME FOR **EPEOM** G5 ADHESIVE

Concrete Temp. (°F) ^{1,2}	Working Time (minutes) ³	Cure Time (hours) ⁴
70	15	24
90	9	24
110	9	24

For SI: $t^{\circ}({}^{\circ}F-32) \times .555 = {}^{\circ}C.$

1 Adhesives must be installed in base material temperatures of 70°F to 110°F or artificially maintained.

2 Cartridge temperature should not differ significantly from the temperature of the base material.

3 Working time is the maximum time from the end of mixing to when the insertion of the anchor into the adhesive shall be completed.

4 Cure time is the minimum time from the end of working time to when the anchor may be torqued or loaded. Anchors are to be undisturbed during the cure time.

APPENDIX A: Strength Design Performance Values

TABLE 1: EFELIM G5 ADHESIVE STEEL DESIGN INFORMATION FOR THREADED ROD

	Characteristic		Inite			Anchor I	nominal dian	neter (d)		
	Characteristic	Symbol	Units	3/8″	1/2″	5/8″	3/4″	7/8″	1″	1-1/4″
Threaded	rod effective cross-sectional area	A _{se}	inch ²	0.078	0.142	0.226	0.335	0.462	0.606	0.969
	Nominal steel strength in tension	N _{sa}	lb	4,500	8,230	13,110	19,400	26,780	35,130	56,210
A36	Nominal steel strength in shear	v _{sa}	lb	2,250	4,940	7,870	11,640	16,070	21,080	33,730
Carbon Steel A36	Strength reduction factor for tension, steel failure mode ¹	Ф	-	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Carbo	Strength reduction factor for shear, steel failure mode ¹	Ф	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65
	Reduction factor for seismic shear	$\alpha_{ m v,seis}$	-	0.70	0.70	0.70	0.70	0.70	0.70	0.70
-	Nominal steel strength in tension	N _{sa}	lb	9,690	17,740	28,250	41,810	57,710	75,710	121,140
93 B	Nominal steel strength in shear	v _{sa}	lb	4,845	10,640	16,950	25,090	34,630	45,430	72,680
Carbon Steel A193 B7	Strength reduction factor for tension, steel failure mode ¹	Φ	_	0.75	0.75	0.75	0.75	0.75	0.75	0.75
arbon S	Strength reduction factor for shear, steel failure mode ¹	Ф	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65
	Reduction factor for seismic shear	$\alpha_{v,seis}$	-	0.70	0.70	0.70	0.70	0.70	0.70	0.70
	Nominal steel strength in tension	N _{sa}	lb	5,810	10,640	16,950	25,090	34,630	45,430	72,680
F593	Nominal steel strength in shear	v _{sa}	lb	2,905	6,390	10,170	15,050	20,780	27,260	43,610
Stainless Steel F593	Strength reduction factor for tension, steel failure mode ¹	Φ	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65
Stainles	Strength reduction factor for shear, steel failure mode ¹	Φ	-	0.60	0.60	0.60	0.60	0.60	0.60	0.60
	Reduction factor for seismic shear	$\alpha_{ m v,seis}$	-	0.70	0.70	0.70	0.70	0.70	0.70	0.70

For SI: 1 inch = 25.4mm, 1 lbf = 4.45N

1 The tabulated value of **Φ** applies when the load combinations of Section 1605.2.1 of the IBC, Section 1612.2.1 of the UBC, or ACI 318 Section 9.2 are used as set forth in ACI 318 D.4.4. If the load combinations of Section 1909.2 of the UBC or ACI 318 Appendix C are used, the appropriate value of **Φ** must be determined in accordance with ACI 318 D.4.5.

TABLE 2: EFEIM G5 ADHESIVE CONCRETE BREAKOUT DESIGN INFORMATION

Characteristic	Cumbal	Unite			Nominal	rod diamete	r, d (inch)	nch)		
	Symbol	Units	3/8″	1/2″	5/8″	3/4″	7/8″	1″	1-1/4″	
Effectiveness factor for uncracked concrete	k c,uncr	-	24	24	24	24	24	24	24	
Effectiveness factor for cracked concrete	k _{c,cr}	-	17	17	17	17	17	17	17	
Minimum concrete thickness ²	h _{min}	in.	h _{ef} +	h _{ef} + 1-1/4		h _{ef} + 2d _o				
Anchor embedment depth - minimum	h ef,min	in.	1-5/8	2	2-1/2	3-1/2	3-1/2	4	5	
Anchor embedment depth - maximum	h ef,max	in.	3-3/8	4-1/2	5-5/8	6-3/4	7-7/8	9	11-1/4	
Minimum spacing	s _{min}	in.	15/16	1	2-1/2	6	3-1/2	4	5	
Minimum edge distance	c _{min}	in.	15/16	1	2-1/2	6	3-1/2	4	5	
Critical edge distance	c ac	in.		S	ee Section 4.	1.10 of the ES	R-1137 Repor	t		
Strength reduction factor for tension, concrete failure mode ¹	Φ	Cond B	0.65	0.65	0.65	0.65	0.65	0.65	0.65	
Strength reduction factor for shear, concrete failure mode ¹	Φ	Cond B.	0.70	0.70	0.70	0.70	0.70	0.70	0.70	

For SI: 1 inch = 25.4mm, 1 lbf = 4.45N

1 The tabulated value of ϕ applies when the load combinations of Section 1605.2.1 of the IBC, Section 1612.2.1 of the UBC, or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.4(c) for Condition B are met. If the load combinations of Section 1909.2 of the UBC or ACI 318 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318 D.4.5 for Condition B.

2 $\,d_0$ represents the nominal drill hole diameter.

	Chave stavistic	Cumhal	Unite			Nomina	l rod diamet	er (inch)		
	Characteristic	Symbol	Units	3/8″	1/2″	5/8″	3/4″	7/8″	1″	1-1/4″
Anchor er	nbedment depth - minimum	h ef,min	in.	1-5/8	2	2-1/2	3-1/2	3-1/2	4	5
Anchor er	Anchor embedment depth - maximum		in.	3-3/8	4-1/2	5-5/8	6-3/4	7-7/8	9	11-1/4
Temperature Range A ^{2,3,4}	•		psi	1,155	1,155	1,155	1,155	1,155	1,155	1,155
Tempe Range	Characteristic Bond Strength for Cracked Concrete ⁶	$\tau_{\kappa,cr}$	psi	475	560	560	560	560	560	560
	Strength Reduction Factor - Dry Concrete	Φ dry, ci	-	0.65	0.65	0.65	0.65	0.55	0.55	0.55
Continuous Inspection	Strength Reduction Factor - Saturated Concrete	Φ sat, ci	-	0.65	0.65	0.65	0.65	0.55	0.55	0.55
ontii nspe	Strength Reduction Factor - Water-Filled Holes	Φ wf, ci	-	0.65	0.65	0.65	0.65	0.55	0.55	0.55
0-	Strength Reduction Factor - Submerged Concrete	Φ sub, ci	-	0.65	0.65	0.65	0.65	0.55	0.55	0.55
	Strength Reduction Factor - Dry Concrete	Φ dry, ci	-	0.55	0.55	0.55	0.55	0.45	0.45	0.45
Periodic nspection	Strength Reduction Factor - Saturated Concrete	Φ sat, ci	-	0.55	0.55	0.55	0.55	0.45	0.45	0.45
Pe Insp	Strength Reduction Factor - Water-Filled Holes	Φ wf, ci	-	0.55	0.55	0.55	0.55	0.45	0.45	0.45
	Strength Reduction Factor - Submerged Concrete		-	0.55	0.55	0.55	0.55	0.45	0.45	0.45
Reductior	duction factor for seismic tension $\Phi_{N, sei}$						0.80			

TABLE 3: EFERN G5 ADHESIVE ANCHOR BOND STRENGTH DESIGN INFORMATION¹

For SI: 1 inch = 25.4mm, 1 lbf = 4.45N, 1ft-lbf= 1.356 N-m, 1 psi=0.006895 MPa.

1 Bond strength values correspond to concrete compressive strength range 2,500 psi to 8,500 psi.

2 Temperature range A: Maximum short term temperature of 130 degrees F and maximum long term temperature of 110 degrees F.

3 Short term elevated concrete temperatures are those that occur over brief interval, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

4 For load combinations consisting of only short-term loads, such as wind or seismic loads, bond strengths may be increased by 36% for Temperature Range A

5 For structures assigned to IBC or IRC Seismic Design Category C, D, E, or F, or UBC Seismic Zone 2b, 3, or 4, bond strength values must be multiplied by $\alpha_{N,seis}$.

SEE TABLE ON ALLOWABLE STRESS DESIGN, ASD, USING LOW STRENGTH CARBON STEEL (A36) THREADED ROD ON NEXT PAGE.

TABLE 1:

TABLE 2:

STEEL DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED ROD⁽¹⁾

Characteristic		Cumbal	Units			Anchor I	nominal diar	neter (d)		
	Characteristic	Symbol	Units	3/8″	1/2″	5/8″	3/4″	7/8″	1″	1-1/4″
Threaded	rod effective cross-sectional area	A _{se}	inch ²	0.078	0.142	0.226	0.335	0.462	0.606	0.969
9	Nominal steel strength in tension	N _{sa}	lb	4,500	8,230	13,110	19,400	26,780	35,130	56,210
el A3	Nominal steel strength in shear	V sa	lb	2,250	4,940	7,870	11,640	16,070	21,080	33,730
Carbon Steel A36	Strength reduction factor for tension, steel failure mode ¹	Φ	-	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Carl	Strength reduction factor for shear, steel failure mode ¹	Φ	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65
	Reduction factor for seismic shear		-	0.70	0.70	0.70	0.70	0.70	0.70	0.70
-	Nominal steel strength in tension	N _{sa}	lb	9,690	17,740	28,250	41,810	57,710	75,710	121,140
93 B7	Nominal steel strength in shear	v _{sa}	lb	5,810	10,640	16,950	25,090	34,630	45,430	72,680
Carbon Steel A193	Strength reduction factor for tension, steel failure mode ¹	Φ	-	0.75	0.75	0.75	0.75	0.75	0.75	0.75
arbon S	Strength reduction factor for shear, steel failure mode ¹	Φ	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65
	Reduction factor for seismic shear	$\alpha_{ m v,seis}$	-	0.70	0.70	0.70	0.70	0.70	0.70	0.70
	F593 CW1 Nominal steel strength in tension	N _{sa}	lb	7.365	13,480	21,470	-	-	-	-
	F593 CW1 Nominal steel strength in shear	V sa	lb	3,680	6,740	10,735	-	-	-	-
F593	F593 CW2 Nominal steel strength in tension	N _{sa}	lb	-	-	-	25,385	35,110	46,055	73,645
Steel	F593 CW2 Nominal steel strength in shear	v _{sa}	lb	-	-	-	12,690	17,555	23,030	36,820
Stainless Steel F593	Strength reduction factor for tension, steel failure mode ¹	Φ	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65
St	Strength reduction factor for shear, steel failure mode ¹	Φ	-	0.60	0.60	0.60	0.60	0.60	0.60	0.60
	Reduction factor for seismic shear		-	0.70	0.70	0.70	0.70	0.70	0.70	0.70

For SI: 1 inch = 25.4mm, 1 lbf = 4.45N, 1ft-lbf = 1.356 N-M, 1 pso = 0.006895 MPa.

1 The tabulated value of **o** applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI-11 9.2 are used. If load combinations of ACI 318-11 Appendix C are used, the appropriate value of **o** must be determined in accordance with ACI 318-11 D.4.

CONCRETE BREAKOUT DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED ROD⁽¹⁾

Characteristic	Cumhal	11-1-1-6			Nominal	rod diamete	r, d (inch)		
Characteristic	Symbol	Units	3/8″	1/2″	5/8″	3/4″	7/8″	1″	1-1/4″
Effectiveness factor for uncracked concrete	k c,uncr	-	24	24	24	24	24	24	24
Effectiveness factor for cracked concrete	k _{c,cr}	-	17	17	17	17	17	17	17
Minimum concrete thickness	h _{min}	in.	h _{ef} + 1-1/4 h _{ef} + 2d ₀						
Anchor embedment depth - minimum	h ef,min	in.	2-3/8	2-3/4	3-1/8	3-1/2	3-1/2	4	5
Minimum spacing	s _{min}	in.	15/16	1-1/2	2-1/2	3	3-1/2	4	5
Minimum edge distance	¢ _{min}	in.	15/16	1-1/2	2-1/2	3	3-1/2	4	5
Critical edge distance	c ac	in.			See Secti	on 4.1.10 of t	his report		
Strength reduction factor for tension, concrete failure mode ¹	Φ	Cond B	0.65	0.65	0.65	0.65	0.65	0.65	0.65
Strength reduction factor for shear, concrete failure mode ¹	Φ	Cond B.	0.70	0.70	0.70	0.70	0.70	0.70	0.70

For SI: 1 inch = 25.4mm, 1 lbf = 4.45N, 1ft-lbf = 1.356 N-M, 1 pso = 0.006895 MPa.

1 The tabulated value of **O** applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2 are used and the requirements of

ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of **o** must be determined in accordance with ACI 318-11 D.4.4 for Condition B.

TABLE 3: RED HEAD A7+ ADHESIVE ANCHOR BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED ROD^{1,5}

Characteristic		Symbol	Units			Nomina	l rod diamet	er (inch)		
	Characteristic	Symbol	Units	3/8″	1/2″	5/8″	3/4″	7/8″	1″	1-1/4″
Anchor er	Anchor embedment depth - minimum		in.	2-3/8	2-3/4	3-1/8	3-1/2	3-1/2	4	5
	nbedment depth - maximum	h ef,max	in.	7-1/2	10	12-1/2	15	17-1/2	20	25
rature Je A ²	Characteristic Bond Strength for Uncracked Concrete Characteristic Bond Strength for Cracked Characteristic Bond Strength for Cracked Concrete		psi	1,770	1,770	1,770	1,770	1,490	1,490	1,490
Tempe Rang	Characteristic Bond Strength for Cracked Concrete	$\tau_{\kappa,cr}$	psi	1,060	790	860	890	695	655	585
Temperature Range B ^{3,4}	Characteristic Bond Strength for UNCracked		psi	1,275	1,275	1,275	1,275	1,080	1,080	1,080
Tempe Rang	Characteristic Bond Strength for Cracked Concrete	$\tau_{\kappa,cr}$	psi	765	570	620	640	500	475	420
	Strength Reduction Factor - Dry Concrete	Φ dry, ci	-	0.65	0.65	0.65	0.65	0.55	0.55	0.55
Continuous Inspection	Strength Reduction Factor - Saturated Concrete	Φ sat, ci	-	0.65	0.65	0.65	0.65	0.55	0.55	0.55
ontii nspe	Strength Reduction Factor - Water-Filled Holes	Φ wf, ci	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65
	Strength Reduction Factor - Submerged Concrete	Φ sub, ci	_	0.65	0.55	0.55	0.65	0.65	0.55	0.65
	Strength Reduction Factor - Dry Concrete	Φ dry, ci	-	0.55	0.55	0.55	0.55	0.55	0.55	0.55
Periodic Inspection	Strength Reduction Factor - Saturated Concrete	Φ sat, ci	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65
Pe Insp	Strength Reduction Factor - Water-Filled Holes	Φ wf, ci	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65
	Strength Reduction Factor - Submerged Concrete	Φsub, ci	_	0.65	0.45	0.45	0.65	0.55	0.45	0.65
Reductior	action factor for seismic tension		-	0.89	0.75	0.76	0.66	0.77	0.80	0.80

For SI: 1 inch = 25.4mm, 1 lbf = 4.45N, 1ft-lbf= 1.356 N-m, 1 psi=0.006895 MPa.

1Bond strength values correspond to concrete compressive strengths ranging from 2,500 psi to 8,000 psi [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1].

2Temperature range A: Maximum short term temperature of 130°F and maximum long term temperature of 110°F.

3Temperature range B: Maximum short term temperature of 176°F and maximum long term temperature of 110°F.

4For load combinations consisting of only short-term loads, such as wind or seismic loads, bond strengths may be increased by 4% for Temperature Range B.

5For structures assigned to IBC or IRC Seismic Design Category C, D, E, or F, bond strength values must be multiplied by aN, seis.

TABLE 4: STEEL DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT REINFORCING BARS¹

	Channa at an inti a	Combal	11				Nominal rod d	iameter (inch)			
	Characteristic	Symbol	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10
Nominal bar	Nominal bar diameter		in.	3/8	1/2	5/8	3/4	7/8	1	1-1/8	1-1/4
Reinforcing	Reinforcing bar effective cross-sectional area		in. ²	0.11	0.2	0.31	0.44	0.6	0.79	1.00	1.27
	Nominal steel strength in tension	N _{sa}	lb	9,900	18,000	27,900	39,600	54,000	71,100	90,000	114,300
09	Nominal steel strength in shear	v _{sa}	il	5,940	10,800	16,740	23,760	32,400	42,660	54,000	68,580
15 Grade	Strength reduction factor for tension, steel failure mode	Φ	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
ASTM 615	Strength reduction factor for shear, steel failure mode ¹	Ф	-	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60
	Reduction factor for seismic shear	$\alpha_{ m v,seis}$	-	0.91	0.91	0.91	0.90	0.90	0.75	0.75	0.75

For SI: 1 inch = 25.4mm, 1 lbf = 4.45N, 1ft-lbf= 1.356 N-m, 1 psi=0.006895 MPa.

1 The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318-11 D.4.4.

TABLE 5: CONCRETE BREAKOUT DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT REINFORCING BARS ^(1,2)

Chann stanistic	Ck.al	11				Nominal rod d	liameter (inch)			
Characteristic	Symbol	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10
Effectiveness factor for uncracked concrete	k uncr	-	24	24	24	24	24	24	24	24
Effectiveness factor for cracked concrete	k cr	-	17	17	17	17	17	17	17	17
Minimum concrete thickness Nominal steel strength in tension	h _{min}	in.	hef +	1-1/4	-	hef + 2do				
Anchor embedment depth - minimum	h ef,min	in.	2-3/8	2-3/4	3-1/8	3-1/2	3-1/2	4	4-1/2	5
Minimum Spacing	s _{min}	in.	15/16	1-1/2	2-1/2	3	3-1/2	4	4-1/2	5
Minimum edge distance	c min	in.	15/16	1-1/2	2-1/2	3	3-1/2	4	4-1/2	5
Critical edge distance	c ac	in.	See section 4.1.10 of this report							
Strength reduction factor for tension, concrete failure mode ¹	Ф	Cond. B	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
Strength reduction factor for shear, concrete failure mode ¹	Ф	Cond. B	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70

For SI: 1 inch = 25.4mm, 1 lbf = 4.45N, 1ft-lbf= 1.356 N-m, 1 psi=0.006895 MPa.

1 The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318-11 D.4.4 for Condition B.

2 The value of f'c used for calculation must be limited to maximum 8,000 psi (55 MPa) in accordance with ACI 318-14 17.2.7 or ACI 318-11 D.3.7, as applicable

TABLE 6: RED HEAD A7+ ADHESIVE ANCHOR BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT REIN-FORCING STEEL ^(1,5)

	Chave stavistic	Cumhal	Ilaita				Nominal rod d	iameter (inch)		
	Characteristic	Symbol	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10
Anchor em	bedment depth - minimum	h _{ef}	in.	2-3/8	2-3/4	3-1/8	3-1/2	3-1/2	4	4-1/2	5
Anchor em	bedment depth - maximum	h _{ef}	in.	7-1/2	10	12-1/2	15	17-1/2	20	22-1/2	25
rrature Je A ²	entry and the second strength for Uncracked Concrete Characteristic Bond Strength for Cracked Concrete Characteristic Bond Strength for Cracked Concrete ⁶		psi	1,675	1,935	1,900	1,700	1,635	1,615	1,585	1,550
Tempe Rang	Characteristic Bond Strength for Cracked Concrete ⁶	τ _{κ,cr}	psi	755	755	755	585	585	585	585	585
Temperature Range B ^{3,4}	Characteristic Bond Strength for Uncracked Concrete	$\tau_{\kappa,uncr}$	psi	1,210	1,400	1,370	1,230	1,180	1,165	1,145	1,120
Tempe Rang	Characteristic Bond Strength for Cracked Concrete ⁶	τ _{κ,cr}	psi	545	545	545	420	420	420	420	435
	Strength Reduction Factor - Dry Concrete	Φ dry, ci	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
tion	Strength Reduction Factor - Saturated Concrete	Φ sat, ci	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
Continuous Inspection	Strength Reduction Factor - Water-Filled Holes	Φ wf, ci	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
	Strength Reduction Factor - Submerged Concrete	Φsub, ci	-	0.65	0.55	0.55	0.65	0.65	0.55	0.55	0.55
	Strength Reduction Factor - Dry Concrete	Φ dry, ci	-	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.65
Periodic Inspection	Strength Reduction Factor - Saturated Concrete	Φ sat, ci	_	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
Peri Inspe	Strength Reduction Factor - Water-Filled Holes	Φ wf, ci	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
	Strength Reduction Factor - Submerged Concrete	Φsub, ci	-	0.65	0.45	0.45	0.65	0.55	0.45	0.45	0.65
Reduction	duction factor for seismic tension		-	0.92	0.92	0.92	0.82	0.82	0.82	0.82	0.82

For SI: 1 inch = 25.4mm, 1 lbf = 4.45N, 1ft-lbf = 1.356 N-M, 1 psi = 0.006895 MPa.

1Bond strength values correspond to concrete compressive strengths ranging from 2,500 psi to 8,000 psi [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1].

2Temperature range A: Maximum short term temperature of 130°F and maximum long term temperature of 110°F.

3Temperature range B: Maximum short term temperature of 176°F and maximum long term temperature of 110°F.

4For load combinations consisting of only short-term loads, such as wind or seismic loads, bond strengths may be increased by 4% for Temperature Range B.

5For structures assigned to IBC or IRC Seismic Design Category C, D, E, or F, bond strength values must be multiplied by aN, seis.

TABLE 7: EXAMPLE RED HEAD A7+ ADHESIVE ALLOWABLE STRESS DESIGN VALUES (ASD) FOR ILLUSTRATIVE PURPOSES

Anchor		* Characteristic	Allowable Tension Load LBS			
Diameter (d)	Embedment Depth, hef (in) (min./max)	Bond Strength τ_{κ} , uncr (psi)	2,500 PSI- 8000 PSI	Controlling Failure Mode		
2/0	2-3/8	1 770	1,929	Concrete		
3/8	7-1/2	1,770	2,280	Steel		
1/2	2-3/4	1 770	2,403	Concrete		
1/2	10	1,770	4,171	Steel		
E /0	3-1/8	1 770	2,911	Concrete		
5/8	12-1/2	1,770	6,644	Steel		
2/4	3-1/2	1 770	3,451	Concrete		
3/4	15	1,770	9,831	Steel		
7/0	3-1/2	1 400	3,451	Concrete		
7/8	17-1/2	1,490	13,571	Steel		
	4		4,216	Concrete		
1	20	1,490	17,802	Steel		
1 1/4	5	1 400	5,892	Concrete		
1-1/4	25	1,490	28,485	Steel		

For SI: 1 inch = 25.4mm, 1 lbf = 4.45N, 1ft-lbf = 1.356 N-M, 1 psi = 0.006895 MPa.

This table was developed based on the following conditions:

1Single anchor with static tension only, A36 threaded rod

2Vertical downward installation direction

3Inspection regimen = Periodic

4Installation temperature = $30^{\circ}F$ to $90^{\circ}F$

5Long term temperature = $110^{\circ}F$

6Short term temperature = 130° F

7Dry hole condition (carbide drilled hole)

8Embedment = hef (min/max for each diameter)

9Concrete determined to remain uncracked for the life of the anchorage

10Load combinations from ACI 318-11 Section 9.2 (no seismic loading)

1130% dead load and 70% live load, controlling load combination 1.2D + 1.6L

12Calculation of weighted average for $\alpha = 0.3^{*}1.2 + 0.7^{*}1.6 = 1.48$

13f c = 2,500 psi (normal weight concrete)

 $14ca1 = ca2 \ge cac$

 $15h \ge hmin$

APPENDIX A: Strength Design Performance Values

TABLE 4: STRENGTH DESIGN USING LOW STRENGTH CARBON STEEL (A36) THREADED ROD ◆ INSTALLED IN f' c = 2,500 PSI – 8,000 PSI UNCRACKED CONCRETE WITH EFERT G5 ADHESIVE

Anchor	Embedment	* Characteristic		AI	lowable Tension Load L	BS	
Diameter (d)	Depth, hef (in) (min./max)	Bond Strength τ_{κ} , uncr (psi)	2,500 PSI (Controlling Mode)	3,000 PSI (Controlling Mode)	4,000 PSI (Controlling Mode)	6,000 PSI (Controlling Mode)	8,000 PSI (Controlling Mode)
2/0	2-3/8	1,155	1,777 (BOND)				
3/8	3-3/8	1,155	2,525 (BOND)				
1/2	2-3/4	1,155	2,743 (BOND)				
1/2	4-1/2	1,155	4,488 (BOND)				
5 /0	3-1/8	1,155	3,896 (BOND)				
5/8	5-5/8	1,155	7,013 (BOND)				
2/4	3-1/2	1,155	5,107 (CONCRETE)	5,236 (BOND)	5,236 (BOND)	5,236 (BOND)	5,236 (BOND)
3/4	6-3/4	1,155	10,098 (BOND)				
7 /0	3-1/2	1,155	4,998 (BOND)				
7/8	7-7/8	1,155	11,246 (BOND)				
	4	1,155	6,240 (CONCRETE)	6,528 (BOND)	6,528 (BOND)	6,528 (BOND)	6,528 (BOND)
1	9	1,155	14,668 (BOND)				
	5	1,155	8,721 (CONCRETE)	9,553 (CONCRETE)	10,200 (BOND)	10,200 (BOND)	10,200 (BOND)
1-1/4	11-1/4	1,155	22,950 (BOND)				

For SI: 1 inch= 25.4mm, 1 lbf = 4.45N, 1ft-lbf= 1.356 N-M, 1 psi=0.006895 MPa

1. Refer to Tables 1, 2 and 3 for steel, concrete and bond strength design information.

2. Bond strength reduction factors based on periodic inspection and dry, saturated, water-filled or submerged concrete conditions.

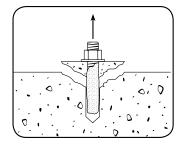
Call 800-848-5611 for controlling modes and loads using stainless steel or higher strength threaded rod.

Procedure to calculate tension load for strength design – SD

Example: 1/2" diameter anchor with embedment depth of 4-1/2" installed in 4,000 psi concrete

1. Calculate steel strength – tension (per ACI 318 D.5.1.2)

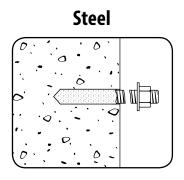
 Φ Nsa = 0.75 * 8,230 = 6,173 lbs


2. Calculate concrete breakout strength - tension Φ kuncr $\sqrt{2,500 \text{ psi}}$ hef^{1.5} = 0.65 * 24 * $\sqrt{2,500}$ * 4-1/2^{1.5} = 7,446 lbs per ACI 318 D.5.2

Normalize load for 4,000 psi concrete = 7,446 $\sqrt{\frac{4,000}{2.500}}$ = 9,418 lbs

- 3. Calculate bond strength tension $\Phi * d * \pi * hef * \tau_{k,uncr} = 0.55 * 1/2 * \pi * 4-1/2 * 1,155 = 4,488$ lbs (per equations D-16a, and D-16f of ESR-1137)
- 4. Controlling strength is 4,488 lbs (bond) lowest load value amongst bond, concrete and steel controlling modes

Strength Design Load = 4,488 lbs


Controlling Modes Concrete

Procedure to calculate tension load for allowable stress design – ASD

- 1. Determine load combination and conversion factor. - Assume 30% dead load and 70% live load using load combination = 1.2D + 1.6L = 1.2(0.3) + 1.6(0.7) = 1.48 (per ACI318 Sect. 9.2)
- 2. Divide controlling strength (see strength design procedure - step 4) 4,488 lbs by the conversion factor of 1.48 = 4,488/1.48 = 3,032 lbs (steel)

Allowable Strength Design Load = 3,032 lbs

APPENDIX B: Strength Design Performance values in accordance to 2015 IBC

ITW RED HEAD TRUBOLT WEDGE ANCHOR

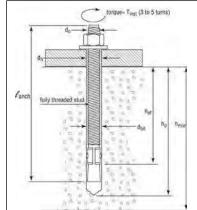
DESIGN INFORMATION TESTED TO ICC-ES AC193 AND ACI 355.2, IN ACCORDANCE WITH 2015 IBC

TRUBOLT WEDGE ANCHOR DESIGN INFORMATION^{1,2,3}

	Gumbal	Ilaita				Ν	lominal Anc	hor Diamet	er			
DESIGN INFORMATION	Symbol	Units	1/4		3,	/8	1,	/2	5	/8	3,	/4
Anchor O.D.	d _o	in	0.2	250	0.3	375	0.5	500	0.6	625	0.7	/50
Effective embedment	h _{ef}	in	1-1/2	2	1-3/4	2-5/8	1-7/8	3-3/8	2-1/2	4	3-1/2	4-3/4
Minimum member thickness	h _{min}	in	4	4	4	5	5	6	5	8	6	8
Critical edge distance	c _{ac}	in	2-5/8	3	2-5/8	5-1/4	3-3/4	6-3/4	5	8	7	9
Minimum edge distance	¢ _{min}	in	1-3/4	1-1/2	2-1/4	2	3-3/4	3-3/4	4-1/4	3-1/4	3-3/4	3-1/2
Minimum anchor spacing	s _{min}	in	1-3/4	1-1/2	2-1/4	2	3-3/4	3-3/4	4-1/4	3-1/4	3-3/4	3-1/2
Min. Specified Yield Strength	fy	lb/in ²		55,000								
Min. Specified Ultimate Strength	f _{uta}	lb/in ²		75,000								
Effective tensile stress area	A _{se}	in²	0.0	0.032 0.078 0.142 0.226						0.3	34	
Steel strength in tension	Ns	lb	2,3	385	5,8	315	10,	645	16,	950	25,	050
Steel strength in shear	Vs	lb	1,4	430	2,975	3,490	4,450	6,385	6,045	10,170	10,990	15,030
Pullout strength, uncracked concrete	N _{p,uncr}	lb	1,392	1,706	2,198	3,469	2,400	4,168	4,155	6,638	8,031	10,561
Anchor Category (All anchors are ductile								1				
Effectiveness factor k _{uncr} uncracked concr	ete						2	4				
Axial stiffness in service load range	β	lb/in	14,651	9,385	17,515	26,424	32,483	26,136	42,899	21,749	43,576	28,697
Coefficient for variation for axial stiffnes	s in service load	range	34	47	28	45	17	33	55	22	63	28
Strength reduction factor $\boldsymbol{\varphi}$ for tension,	steel failure mo	des	0.75									
Strength reduction factor $\boldsymbol{\varphi}$ for shear, ste	el failure mode	s	0.65									
Strength reduction factor $\boldsymbol{\varphi}$ for tension, co	oncrete failure m	odes, Condition B					0.	65				
Strength reduction factor $\boldsymbol{\varphi}$ for shear, cor	crete failure mo	odes, Condition B					0.	70				

¹ Trubolt+ Anchor Design Strengths must be determined in accordance with ACI 318-05 Appendix D and this table

² The Trubolt+ Wedge Anchor is a ductile steel element as defined by ACI 318 D.1


³ 1/4", 3/8", & 1/2" diameter data is listed in ICC-ES ESR-2251.

TRUBOLT WEDGE ANCHOR (INSTALLED) TRUBOLT WEDGE INSTALLATION INFORMATION

Trubolt[®]

Trubolt®

Wedge Anchor

	Cumhal	IIn:te				Nomina	al Ancho	r Diame	ter (in.)			
	Symbol	Units	1,	/4	3,	/8	1,	1/2		5/8		/4
Anchor outer diameter	d ₀	in	0.25		0.3	875	0.5		0.625		0.7	50
Nominal carbide bit diameter	d _{bit}	in	1,	/4	3,	/8	1,	1/2 5/8		5/8		/4
Effective embedment depth	h _{ef}	in	1-1/2	2	1-3/4	2-5/8	1-7/8	3-3/8	2-1/2	4	3-1/2	4-3/4
Min hole depth	h _o	in	2	2-1/2	2-1/2	3-3/8	2-3/4	4-1/4	3-3/4	5-1/4	4-3/4	6
Min slab thickness	h _{min}	in	4	1	4	5	5	6	5	8	6	8
Installation torque	T _{inst}	ft-lb	4	4		25		5	90		110	
Min hole diameter in fixture	d _h	in	5/	16	7/	16	9/	16	11,	/16	13,	/16

APPENDIX B: Strength Design Performance values in accordance to 2015 IBC

Wedge Anchor **Concrete Compressive Strength Nominal Anchor** Effective Diameter (in.) **Embedment Depth (in.)** f'c = 2,500 psif'c = 3,000 psif'c = 4,000 psif'c = 6,500 psi1-1/2 1,525 1,610 1,822 1,392 1/4 2 1,869 1,947 2,151 1,706 1-3/4 2,408 2,621 2,198 3,153 3/8 2-5/8 3,469 3,800 3,936 4,275 1 - 7/82,400 2,629 3,172 4,520 1/2 3-3/8 4,520 4,520 4,168 4,520 2-1/2 4,376 5,578 4,155 4,155 5/8 4 6,900 7,968 10,157 6,638 3-1/2 8,031 8,322 9,610 12,251 3/4 4-3/4 10,561 10,561 10,561 12,251

TRUBOLT WEDGE PULLOUT STRENGTH (Np, unc) (POUNDS) 1

For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N, 1 psi = 0.006895 Mpa

1 Values are for single anchors with no edge distance or spacing reduction.

TRUBOLT WEDGE ANCHOR ALLOWABLE STATIC TENSION (ASD), NORMAL-WEIGHT UNCRACKED CONCRETE 1-6

Nominal Anchor	Effective		Concrete Comp	ressive Strength	
Diameter (in.)	Embedment Depth (in.)	f′c = 2,500 psi	f′c = 3,000 psi	f′c = 4,000 psi	f′c = 6,500 psi
1/4	1-1/2	611	670	707	800
1/4	2	749	821	855	945
3/8	1-3/4	965	1,058	1,151	1,385
5/6	2-5/8	1,524	1,669	1,729	1,878
1/2	1-7/8	1,054	1,155	1,393	1,985
1/2	3-3/8	1,831	1,985	1,985	1,985
E /0	2-1/2	1,825	1,825	1,922	2,450
5/8	4	2,915	3,030	3,499	4,461
2/4	3-1/2	3,527	3,655	4,221	5,381
3/4	4-3/4	4,638	4,638	4,638	5,381

For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N, 1 psi = 0.006895 Mpa

Design Assumptions:

¹ Single anchor with static tension load only.

² Concrete determined to remain uncracked for the life of the anchorage.

³ Load combinations from 2006 IBC, Sections 1605.2.1 and 1605.3.1 (no seismic loading).

⁴ Thirty percent dead load and 70 percent live load, controlling load combination 1.2D + 1.6L

⁵ Calculation of weighted average: 1.2D + 1.6L = 1.2 (0.3) + 1.6 (0.7) = 1.48

⁶ Values do not include edge distance or spacing reductions.

TRUBOLT WEDGE ANCHOR ALLOWABLE STATIC SHEAR (ASD), STEEL (POUNDS)¹⁻⁵

Nominal Anchor Diameter (in.)	Effective Embedment Depth (in.)	Allowable Steel Capacity, Static Shear
1/4	1-1/2	628
1/4	2	028
3/8	1-3/4	1,307
5/8	2-5/8	1,533
1/2	1-7/8	1,954
1/2	3-3/8	2,804
5/8	2-1/2	2,655
5/8	4	4,467
3/4	3-1/2	4,827
5/4	4-3/4	6,601

For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N, 1 psi = 0.006895 Mpa **Design Assumptions:**

¹ Single anchor with static shear load only.

³ Load combinations from 2006 IBC, Sections 1605.2.1 and 1605.3.1 (no seismic loading).

³ Thirty percent dead load and 70 percent live load, controlling load combination 1.2D + 1.6L

⁴ Calculation of weighted average: 1.2D + 1.6L = 1.2 (0.3) + 1.6 (0.7) = 1.48

⁵ Values do not include edge distance or spacing reductions.

Trubolt[®]

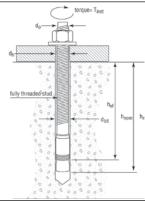
APPENDIX C: Strength Design Performance values in accordance with 2015 IBC ITW RED HEAD TRUBOLT+ and OVERHEAD TRUBOLT+ EDGE ANCHOR DESIGN INFORMATION TESTED TO ICC-ES AC 193 AND ACI 355.2, IN ACCORDANCE WITH 2015 IBC

TRUBOLT+ AND OVERHEAD TRUBOLT+ WEDGE ANCHOR DESIGN INFORMATION¹

Characteristic	Symbol	Units				Nomi	nal Anchor	Diameter	(inch) ⁴			
Characteristic	Symbol	Units	3/	/8"		1	/2"		5/	8"	3/4	"
Anchor category	1, 2 or 3			1			1			1	1	
Minimum effective embedment depth	h _{ef}	in	1-	5/8		2	3-	1/4	2-3/4	4-1/4	3-3/	4
Minimum concrete member thickness	h _{min}	in	4	5	4	6	6	8	6	6-1/4	7	8
Critical edge distance	c _{ac}	in	5	3	6	6	7-1/2	6	7-1/2	6-1/2	12	1
		Dat	a for Steel	Strengths ·	– Tension a	nd Shear						
Minimum specified yield strength	fy	psi	60,	,000		55	,000		55,	000	55,00	00
Minimum specified ultimate strength	f _{uta}	psi	75,	,000	75,000		75,	000	75,00	00		
Effective tensile stress area (neck)	A _{se}	in ²	0.0	056		0.	119		0.	83	0.26	6
Effective tensile stress area (thread)	A _{se}	in ²	0.0	075		0.	142		0.2	217	0.33	2
Steel strength in tension	N _{sa}	lbf	4,2	200		8,	925		13,	725	19,9	50
Steel strength in shear, uncracked or cracked concrete ⁶	V _{sa}	lbf	1,8	830		5,	175		8,9	955	14,93	70
Steel strength in shear – seismic loads	v _{eq}	lbf	1,5	545		5,	175		8,9	955	11,775	
Strength reduction factor <i>f</i> for tension, steel failure mod	les ²		0.75 0.75			0.	0.75		5			
Strength reduction factor f for shear, steel failure modes	5 ²		0.	.60		0	.65		0.	65	0.6	5
	Data for (Concrete E	Breakout Co	oncrete Pry	out Strengt	ths in Tensi	on and She	ar				
Effectiveness factor – uncracked concrete	k uncr		2	24	24		2	4	24			
Effectiveness factor – cracked concrete	k _{cr}	—	1	17	17			1	7	17		
Modification factor for cracked and uncracked concrete ³	Ψc,N	_	1	.0			1.0		1	.0	1.0)
Coefficient for pryout strength	к _{ср}	_	1	.0	1	.0	2	.0	2	.0	2.0)
Load-bearing length of anchor	۱ _e	in	1.0	625	2	.0	3.	.25	2.75	4.25	3.7	5
Strength reduction factor ϕ for tension, concrete failure m	odes, Condition B ²		0.	.65		0	.65	C		65	0.6	5
Strength reduction factor ϕ for shear, concrete failure mo	des, Condition B ²	-	0.	.70		0	.70		0.	70	0.70	0
· · ·			Data	for Pullout	Strengths							
Pullout strength, uncracked concrete	N _{p,uncr}	lbf	See Fo	otnote ⁵	See Fo	otnote 5	6,	540	5,430	8,900	See Foot	note
Pullout strength, cracked concrete	N _{p,cr}	lbf	See Fo	otnote ⁵		See Fo	otnote 5		See Fo	otnote 5	See Foot	note
Pullout strength for seismic loads	N _{eq}	lbf	See Fo	otnote ⁵		See Fo	otnote 5		See Footnote ⁵	6,715	See Foot	note
Strength reduction factor <i>f</i> for tension, pullout failure mo	odes, Condition B ²		See Fo	otnote ⁵		0	.65			65	See Foot	note
			Ado	ditional And	hor Data							
Axial stiffness in service load range in uncracked concrete	b _{uncr}	lbf/in	100	,000	250,000 250,000			,000	250,0	00		
Axial stiffness in service load range in cracked concrete	b cr	lbf/in	40,	,000		20	,000		20,	000	20,00	00

For SI: 1 inch = 25.4 mm, 1 in2 = 645.16mm2, 1 lbf = 4.45 N, 1 psi = 0.006895 MPa, 1 lbf • 102/in - 17,500 N/m.

¹ The 1/2", 5/8" and 3/4" diameter Trubolt+ Wedge Anchors are ductile steel elements as defined by ACI 318 D.1. The 3/8" diameter Trubolt+ is considered ductile under tension loading and brittle under shear loading.
² All values of φ apply to the load combinations of IBC Section 1605.2, ACI 318 Section 9.2 or UBC Section 1612.2. If the load combinations of Appendix C or UBC Section 1909.2 are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.5. For installations where reinforcement that complies with ACI 318 Appendix D requirements for Condition A is present, the appropriate φ factor must be determined in accordance with ACI 318 D.4.4.


³ For all design cases $\Psi_{C,N} = 1.0$. The appropriate effectiveness factor for cracked concrete (k_C) or uncracked concrete (k_{uncr}) must be used.

⁴ The actual diameter for the 3/8" diameter anchor is 0.361" for the 5/8" diameter anchor is 0.615" and the 3/4" diameter anchor is 0.7482".

⁵ Anchor pullout strength does not control anchor design. Determine steel and concrete capacity only.

⁶ Steel strength in shear values are based on test results per ACI 355.2, Section 9.4 and must be used for design.

TRUBOLT + WEDGE ANCHOR (INSTALLED)

TRUBOLT + AND OVERHEAD TRUBOLT+ WEDGE INSTALLATION INFORMATION

Parameter	Notation	Units	Nominal Achor Diameter (inch)									
			3	3/8 1/2			/2		5,	5/8		/4
Anchor outer diameter	d _o	inches	0.3	861		0	.5		0.615		0.7	482
Nominal carbide bit diameter	d _{bit}	inches	3	/8		1	/2		5,	/8	3,	/4
Effective embedment depth	h _{ef}	inches	1-:	5/8		2	3-	1/4	2-3/4	4-1/4	3-3	3/4
Minimum anchor embedment depth	h _{nom}	inches		2	2-	1/2	3-3/4		3-1/4	4-3/4	4-3	3/8
Minimum hole depth ¹	h ₀	inches	2-	1/4	2-	3/4	4		3-1/2	5	4-5/8	
Minimum concrete member thickness ¹	h _{min}	inches	4	5	4	6	6	8	6	6-1/4	7	8
Critical edge distance ¹	с _{ас}	In.	5	3	6	6	7-1/2	6	7-1/2	6-1/2	12	10
Minimum anchor spacing ¹	s _{min}	ln.	3-1/2	2-1/2	6	5-3/4	4	5-3/4	8	6	6	6
Minimum edge distance ¹	c min	In.		3		(6		7-1/2	5	7-1/2	7-1/2
Minimum overall anchor length	I	inches	2-1/2		3-	-3/4 4-1/2		1/2	4-1/4	6	5-1	1/2
Installation torque	T _{inst}	ft-lb	30		45			90		1	10	
Minimum diameter of hole in fastened part	dh	inches	1/2 5/8				3/4		7/8			

For SI: 1 inch = 25.4 mm, 1 ft-lb = 1.356 N-m.

APPENDIX C: Strength Design Performance values in accordance with 2015 IBC

TRUBOLT AND OVERHEAD TRUBOLT + WEDGE ANCHOR ALLOWABLE STRESS DESIGN (ASD) VALUES FOR ILLUSTRATIVE PURPOSES

Anchor Notation	Anchor Embedment Depth	Effective Embedment Depth	Allowable Tension Load
	(inches), h _{nom}	(inches), h _{ef}	(lbs)
3/8	2	1-5/8	1,090
1/2	2-1/2	2	1,490
1/2	3-3/4	3-1/4	2,870
5/8	3-1/4	2-3/4	2,385
0/0	4-3/4	4-1/4	3,910
3/4	4-3/8	3-3/4	3,825

For SI: 1 inch = 25.4 mm, 1 ft-lb = 4.45N.

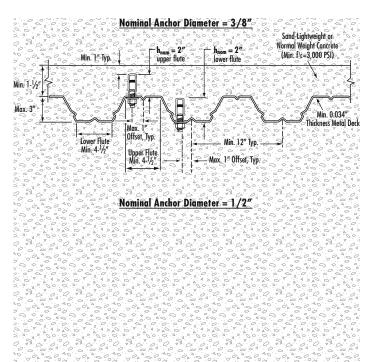
Design Assumptions:

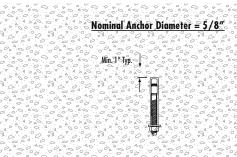
1 Single anchor with static shear load only.

² Load combinations from 2006 IBC, Sections 1605.2.1 and 1605.3.1 (no seismic loading).

³ Thirty percent dead load and 70 percent live load, controlling load combination 1.2D + 1.6L

⁴ Calculation of weighted average: 1.2D + 1.6L = 1.2(0.3) + 1.6(0.7) = 1.48


⁵ Values do not include edge distance or spacing reductions.


ITW RED HEAD TRUBOLT+ and OVERHEAD TRUBOLT+ WEDGE ANCHOR DESIGN INFORMATION FOR INSTALLATION IN THE SOFFIT OF CONCRETE FILL ON METAL DECK FLOOR AND ROOF ASSEMBLIES

TRUBOLT+ AND OVERHEAD TRUBOLT+ WEDGE ANCHOR DESIGN INFORMATION

				Nominal Anchor Diameter					
Characteristic	Cumbel	11	3/8"	1/	1/2"		8"		
Characteristic	Symbol	Units	Upper /Lower	Upper /Lower	Lower Only	Lower Only	Lower Only		
			$h_{ef} = 1-5/8"$	h _{ef} = 2"	h _{ef} = 3-1/4"	h _{ef} = 2-3/4"	$h_{ef} = 4 - 1/4''$		
Pullout strength, uncracked concrete over metal deck	Np, deck, uncr	lbf	2,170	2,515	5,285	3,365	6,005		
Pullout strength, cracked concrete over metal deck	Np, deck, cr	lbf	1,650	1,780	4,025	2,405	5,025		
Reduction factor for pullout strength in tension, Condition B	φ				0.65				
Shear strength, uncracked concrete over metal deck	Vp, deck, uncr	lbf	1,640	2,200	3,790	2,890	6,560		
Reduction factor for steel strength in shear	φ		0.60	0.65					
Anchor embedment depth	h _{nom}	in	2.0	2.5	3.75	3.25	4.75		

For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N

IT W **Red Head** Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at www.itwredhead.com

APPENDIX C: Strength Design Performance values in accordance with 2015 IBC ITW RED HEAD TRUBOLT+ WEDGE ANCHOR DESIGN INFORMATION TESTED TO ICC-ES AC 193 AND ACI 355.2, IN ACCORDANCE WITH 2015 IBC

TRUBOLT+ STAINLESS STEEL WEDGE ANCHOR DESIGN INFORMATION¹

Characteristic	Symbol	Units		1/	/2"		5/	8"	
Anchor category	1, 2 or 3				<u>-</u> 1		J		
Minimum effective embedment depth	h _{ef}	in	2	2	3-1	/4	2-3/4	4-1/4	
Minimum concrete member thickness	h _{min}	in	4	6	6	8	6	6-1/4	
Critical edge distance	c _{ac}	in	6	6	7-1/2	6	7-1/2	6-1/2	
Dat	a for Steel St	rengths -	- Tension a	and Shear	· · ·				
Minimum specified yield strength	fy	psi		65,	000		65,	000	
Minimum specified ultimate strength	futa	psi		100	,000		100,	000	
Effective tensile stress area (neck)	A _{se}	in ²		0.1	119		0.1	83	
Effective tensile stress area (thread)	A _{se}	in ²		0.1	142		0.2	17	
Steel strength in tension	N _{sa}	lbf		11,	900		18,	300	
Steel strength in shear, uncracked or cracked concrete ⁶	V _{sa}	lbf		7,2	265		10,	215	
Steel strength in shear – seismic loads	V _{eq}	lbf		5,8	305		8,105		
Strength reduction factor <i>f</i> for tension, steel failure mode				0.	75		0.75		
Strength reduction factor <i>f</i> for shear, steel failure modes	2			0.	65		0.0	65	
Data for Concrete I	Breakout Con	crete Pry	out Streng	gths in Ter	nsion and S	hear			
Effectiveness factor – uncracked concrete	k _{uncr}	—		2	24		2	4	
Effectiveness factor – cracked concrete	k _{cr}	—		1	7		1	7	
Modification factor for cracked and uncracked concrete ³	Ус,N	—		1	.0		1.	0	
Coefficient for pryout strength	k _{cp}	_	1	1.0 2.0		2.	.0		
Load-bearing length of anchor	le	in	2	.0	3.2	25	2.75	4.25	
Strength reduction factor f for tension, concrete failure mod	les, Condition B ²			0.	65		0.0	65	
Strength reduction factor f for shear, concrete failure mode	-			0.	70		0.1	70	
	Data fo	r Pullout	Strength	s			1		
Pullout strength, uncracked concrete	N _{p,uncr}	lbf	See Foo		6,5	40	5,430	8,900	
Pullout strength, cracked concrete	N _{p,cr}	lbf		See Fo	otnote ⁴		See Foo	tnote 4	
Pullout strength for seismic loads	N _{eq}	lbf	2,3	345	See Foo	tnote ⁴	Se Footr	e iote ⁴	
Strength reduction factor <i>f</i> for tension, pullout failure mo	des, Condition B ²			0.	65		0.0	65	
	Addit	ional Anc	hor Data						
Axial stiffness in service load range in uncracked concrete	b _{uncr}	lbf/in		250	,000		250,	000	
Axial stiffness in service load range in cracked concrete	b _{cr}	lbf/in		20,	000		20,	000	

 $\label{eq:ForSI: 1 inch = 25.4 mm, 1 in2 = 645.16mm2, 1 lbf = 4.45 \ \text{N}, 1 psi = 0.006895 \ \text{MPa}, \ 1 \ \text{lbf} \bullet 102/\text{in} - 17,500 \ \text{N/m}.$

¹ The 1/2" and 5/8" diameter Trubolt+ Wedge Anchors are ductile steel elements as defined by ACI 318 D.1.

² All values of f apply to the load combinations of IBC Section 1605.2, ACI 318 Section 9.2 or UBC Section 1612.2. If the load combinations of Appendix C or UBC Section 1909.2 are used, the appropriate value of f must be determined in accordance with ACI 318 D.4.5. For installations where reinforcement that complies with ACI 318 Appendix D requirements for Condition A is present, the appropriate f factor must be determined in accordance with ACI 318 D.4.4.

³ For all design cases $\Psi_{C,N} = 1.0$. The appropriate effectiveness factor for cracked concrete (k_{cr}) or uncracked concrete (k_{uncr}) must be used.

⁴ Anchor pullout strength does not control anchor design. Determine steel and concrete capacity only.

⁵ Steel strength in shear values are based on test results per ACI 355.2, Section 9.4 and must be used for design.

TRUBOLT + WEDGE ANCHOR (INSTALLED)

fully threaded stu

torque= T_{inst}

TRUBOLT + STAINLESS STEEL WEDGE INSTALLATION INFORMATION

Parameter	Notation	Units						
				1,	/2		5	/8
Anchor outer diameter	do	do inches 0.5			0.	615		
Nominal carbide bit diameter	d _{bit}	inches		1,	/2		5	/8
Effective embedment depth	h _{ef}	inches		2	3-1	1/4	2-3/4	4-1/4
Minimum anchor embedment depth	h _{nom}	inches	2-	1/2	3-3	8/4	3-1/4	4-3/4
Minimum hole depth ¹	ho	inches	2-3/4		4		3-1/2	5
Minimum concrete member thickness ¹	h _{min}	inches	4	6	6	8	6	6-1/4
Critical edge distance ¹	cac	In.	6	6	7-1/2	6	7-1/2	6-1/2
Minimum anchor spacing ¹	^s min	In.	6	5-3/4	4	5-3/4	8	6
Minimum edge distance ¹	c _{min}	In.		(5		7-1/2	5
Minimum overall anchor length	I	inches	3-3/4		4 4-1/2		4-1/4	6
Installation torque	Tinst	ft-lb	45		(90		
Minimum diameter of hole in fastened part	dh	inches		5	/8		3/4	

For SI: 1 inch = 25.4 mm, 1 ft-lb = 1.356 N-m.

Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

APPENDIX D: Installation information for Tapcon+ Screw Anchors¹

Characteristics	C	Units		Nomina	Anchor Diameter (i	nchor Diameter (inch)				
Characteristics	Symbols	Units	1/	4	3/8	1/2				
Head Style	-	-	Hex H	lead	Hex Head	Hex Head		1		
Nominal Outside diameter (Shank)	d _{a3}	in.	0.25		0.38	0.50				
Nominal Outside diameter (threads)	-	in.	0.33		0.46	0.59				
Drill Bit Specification	d _{bit}	in.	14 Tapcon+ Bit 14 Tapcon+ Bit		³/8 ANSI Bit	1/2 ANSI Bit		it		
Minimum base plate clear- ance hole diameter	d _h	in.	3/8		1/2	5/8				
Maximum installation torque ³	Tinst, max	ft-lbf	20		50		70			
Maximum Impact Wrench Torque Rating	Timpact, max	ft-lbf	11	5	200		345			
Effective embedment depth	h _{ef}	in.	1.4	15	1.78	1.32	2.17	3.02		
Minimum nominal embedment depth ⁴	h _{nom}	in.	2		2 1/2	2	3	4		
Minimum hole depth	h _{hole}	in.	21	2 ¹ / ₄ 2 ³ / ₄		2 1/4	3 1/4	4 1/4		
Minimum concrete member thickness	h _{min}	in.	4		4	4		6		
Critical edge distance	c _{ac}	in.	2 1/2		4 1/2	3	4	5		
Minimum edge distance	c _{min}	in.	11	/2	1 1/2	2 1/2	1 ³ / ₄	2 1/2		
Minimum Spacing	s _{min}	in.	3		3	3	3 1/2	3		

APPENDIX D: Tension Strength Design Information for Tapcon+ Screw Anchors¹ Table 2

	6 1 1			No	ominal Anchor Di	iameter (inch)						
Characteristic	Symbol	Units	1/4		3/8		1/2					
Head Style	-	-	Hex He	ad	Hex Head		Hex Head					
Drill bit specification	-	in.	1/4 Tapcon+ Bit	1/4 ANSI Bit	3/8 ANSI Bit		1/2 ANSI Bit					
Anchor Category	1, 2, or 3	-	1	2 1 1								
Effective embedment depth	h _{ef}	in.	1.45		1.78	1.32	3.02					
Minimum concrete member thickness	h _{min}	in.	4		4	4	j					
Critical edge distance	c _{ac}	in.	2 1/2	2	4 1/2	3	4	5				
		Dat	a for Steel Strength	in Tension								
Minimum specified yield strength	fy	psi	100,000 100,000 100,000									
Minimum specified ultimate strength	f _{uta} (f _{ut})⁵	psi	125,000 125,000				125,000					
Effective tensile stress area	A _{se}	in²	0.0470		0.098		0.1850					
Steel strength in tension	V _{sa}	lbf	5,900		12,250		23,125					
Strength reduction factor O for ten- sion, steel failure modes ²	Φ _{sa}	-	0.65		0.65	0.65						
Data for Concrete Breakout Strength in Tension												
Effectiveness factor - uncracked concrete	k _{uncr}	-	24		27							
Effectiveness factor - cracked concrete	k _{cr}	-	17		17		17					
Modification factor for cracked and uncracked concrete ³	Ψ _{c,N} (Ψ ₃)⁵	-	1.0		1.0	1.0						
Strength reduction factor Ø for tension, concrete failure modes, Condition B ³	Φ _{cb}	-	0.65	0.55	0.65	0.65						
		Data	for Pullout Strengt	n in Tension								
Pullout strength, uncracked concrete	N _{p,uncr}	lbf	2,10	7	See foot- bote 4		See footnote 4					
Pullout strength, cracked concrete	N _{p,cr}	lbf	857		1,837		See footnote 4					
Pullout strength for seismic loads	N _{p,eq}	lbf	857		1,677		See footnote 4					
Strength reduction factor Φ for tension, pullout failure modes, Condition B ³	Φ _p	-	0.65	0.55	0.65	See footnote 4						
			Additional Anchor	Data								
Axial stiffness in service load range in uncracked concrete	β _{uncr}	lbf/in	385,000		800,000	800,000						
Axial stiffness in service load range in cracked concrete	β _{cr}	lbf/in	225,0	00	365,000	365,000						

For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m

¹The data presented in this table is to be used in conjunction with the design criteria of ACI 318 Appendix D

² The tabulated value of Φ_{sa} applies when the load combinations of Section 1605.2.1 of the IBC or ACI 318 section 9.2 are used. If load combinations of ACI 318 Appendix C are used, the appropriate value of Φ must be determined in accordance with ACI 318-11 D.4.4(b).

³ The tabulated value of Φ_{cb} and Φ_{cp} applies when the load coombinations of Section 01605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, the appropriate value of Φ must be determined in accordance with ACI 318-11 D.4.4(c) for Condition B

⁴ Pullout resistance does not govern design and does not need to be considered

⁵ The notation in parenteses is for the 2006 IBC

⁶ For calculation only. For actual hef see Table 1

⁷ For the strength between the threaded cap and anchor head

APPENDIX D: Shear Strength Design Information for Tapcon+ Screw Anchors¹ Table 3

Characteristic	Symbol	Units	Nominal Anchor Diameter (inch)						
Characteristic			1/4		3/8	1/2			
Head Style	-	-	Hex Head		Hex Head	Hex Head			
Drill bit specification	-	in.	1/4 Tapcon+ Bit	1/4 ANSI Bit	3/8 ANSI Bit	1/2 ANSI Bit			
Anchor Category	1, 2, or 3	-	1	2	1	1			
Minimum effective embedment depth	h _{ef}	in.	1.45		1.78	1.32	2.17	3.02	
Minimum concrete member thickness	h _{min}	in.	4		4	4 6		6	
Critical edge distance	c _{ac}	in.	2 1/2		4 1/2	3	4	5	
Data for Steel Strengths in Shear									
Minimum specified yield strength	fy	psi	100,000		100,000	100,000			
Minimum specified ultimate strength	f _{uta} (f _{ut})⁵	psi	125,000		125,000	125,000			
Effective shear stress area	A _{se}	in²	0.0470		0.098	0.1850			
Steel strength in shear - static	V _{sa}	lbf	2,045		3,621	12,610			
Steel strength in shear - seismic	V _{sa, eq}	-	1,350		2,920	9,300			
Strength reduction factor Φ for shear, steel failure modes ²	Φ _{sa}	-	0.60		0.60	0.60			
Data for Concrete Breakout and Concrete Pryout Strengths in Shear									
Nominal Outside Diameter (shank)	$d_a(d_0)^4$	in.	0.25		0.38	0.50			
Load bearing length of anchor	٤e	-	1.45		1.78	1.32	2.17	3.02	
Coefficient for pryout strength	Кср	-	1.0		1.0	1.0 2.0		2.0	
Strength reduction factor for shear, concrete breakout ³	Φ _{cb}	-	0.70		0.70	0.70			
Strength reduction factor for shear, pryout ³	Φ _{cp}	-	0.70		0.70	0.70			

For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m

¹The data presented in this table is to be used in conjunction with the design criteria of ACI 318 Appendix D

² The tabulated value of Φ_{sa} applies when the load combinations of Section 1605.2.1 of the IBC or ACI 318 section 9.2 are used. If load combinations of ACI 318 Appendix C are used, the appropriate value of Φ must be determined in accordance with ACI 318-11 D.4.4(b).

³ The tabulated value of Φ_{cb} and Φ_{cp} applies when the load coombinations of Section o1605.2.1 of the IBC or ACI 318 Section 9.2 are used and the requirements of ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, the appropriate value of Φ must be determined in accordance with ACI 318-11 D.4.4(c) for Condition B

⁴ Pullout resistance does not govern design and does not need to be considered

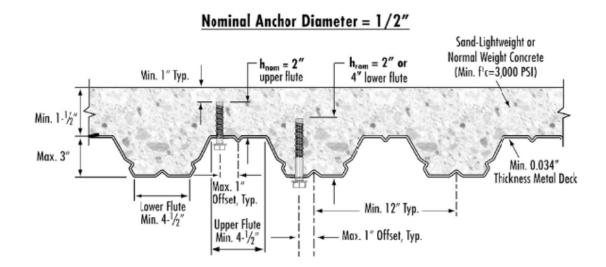
⁵ The notation in parenteses is for the 2006 IBC

⁶ For calculation only. For actual hef see Table 1

⁷ For the strength between the threaded cap and anchor head

APPENDIX D: Tapcon+ Screw Anchors Design Information for Anchors Located in the Soffit of Concrete Over Steel Deck Floor and Roof Assemblies^{1,2,3,4,5}

Characteristic	Granden	Units	Nominal Anchor Diameter (inch)		
Characteristic	Symbol		1/2		
Location of installation	-	-	Lower Flute Upper F		Upper Flute
Minimum hole depth	h _{hole}	in.	2 1/2	4 1/2	2 1/2
Nominal embedment depth	h _{nom}	in.	2	4	2
Minimum effective embedment depth	h _{ef}	in.	1.32	3.02	1.32
Characteristic pullout strength, uncracked concrete over metal deck	N _{p, deck,uncr}	lbf	1,720	4,950	2,405
Characteristic pullout strength, cracked concrete over metal deck	N _{p, deck,cr}	lbf	975	2,805	1,360
Characteristic shear strength, concrete over metal deck	V _{sa, deck}	lbf	3,825	6,130	3,825
Characteristic shear strength - seismic, concrete over metal deck	V _{sa, deck, eq}	lbf	2,820	4,520	2,820
Reduction factor for pullout strength in tension, Condition B	Ф	-	0.65		
Reduction factor for pullout strength in shear, Condition B	Ф	-		0.65	


For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m

¹Values for N_{p, deck,uncr}, N_{p, deck,cr}, V_{sa, deck}, V_{sa, deck}, eq apply to sand-lightweight concrete having a inimum concrete compressive strength, f² c of 3,000 psi.

² The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by $(f_c / 3000 ps)^{0.5}$

³ All values of Φ apply to the load combinations of IBC Section 1605.2.1, or ACI 318 Section 9.2. If the load combinations of Appendix C are used, then appropriate value of Φ must be determined in accordance with ACI 318-11 D.4.4. For installations where reinforement that complies with ACI 318 Appendix D requirements for Condition A is present, the appropriate Φ factor must be determined in accordance with ACI 318-11 D.4.3.

⁴ The minimum anchor spacing along the flute must be greater of 3 h_{ef} or 1.5 times the flute width in accordance with Section 4.1.11 of this report ⁵ Installation must comply with Figure 6 of this report

Notes	

